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Preface
In this report results from the project “To reuse or not: is purified wastewater a non-
toxic and sustainable resource for the future? (REASSURE)” are presented.

The project is one of the four synthesis projects carried out within the research 
initiative Wastewater and Eutrophication.

With the four synthesis projects, the Swedish Environmental Protection Agency 
and the Swedish Agency for Marine and Water Management wanted to summarize 
and analyze the state of knowledge and knowledge needs in the areas of wastewater 
and eutrophication. The overall purpose of the syntheses was to contribute to policy 
development in sustainable water management so that we achieve the environ-
mental objectives in the long term and that the state of the environment is improved. 
The call focused on three areas, one of which was wastewater as a resource.

The project has been financed with funds from the Swedish Environmental 
Protection Agency’s environmental research grant.

The report was written by Uzair Akbar Khan, Lutz Ahrens, Karin Wiberg, 
Lars Sonesten, Claudia Von Brömssen and Foon Yin Lai (principal investigator), 
all from Swedish University of Agricultural Sciences SLU, with contribution from 
Cecilia Stålsby Lundborg from Karolinska Institutet.

The report has been reviewed for scientific quality by Åsa Davidsson (Lund 
university) as well as for practical relevance by Cezary Bose, Maximilian Lüdtke 
(the Swedish Environmental Protection Agency) and Margareta Lundin Unger (the 
Swedish Agency for Marine and Water Management).

The authors are responsible for the content of the report.

Stockholm, December 2024

Johan Bogren
Acting Head of Department, Sustainability Department
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Summary
Innovative solutions, like safe reuse, are required in water and sludge manage-
ment to achieve circular economy and to address the challenges of global water 
 scarcity and soil nutrient loss. In the research project “REASSURE”, the overall aim 
was to enhance the understanding of the potentiality and sustainability of using 
 domestic wastewater as a resource in Sweden and abroad, with a focus on  hazardous 
 pollutants, metals and microplastics. The project had the following specific 
 objectives:

1. Determine factors that influence or determine the reuse of wastewater and sludge 
across countries;

2. Characterize the current state of wastewater reuse in Sweden and the occurrence 
of hazardous pollutants as obstacles to its reuse;

3. Evaluate the effectiveness of different advanced treatment techniques against 
hazardous pollutants for a better effluent water quality;

4. Assess the risks of hazardous pollutants to environmental and health impacts 
associated with wastewater as a resource.

This literature synthesis project presents insights into the influencing factors for 
cross-national differences in the reuse of wastewater and sludge. Data on national 
wastewater and sludge reuse was compiled along with relevant national statistics. 
Sludge data is compiled in this report for cross-national comparison only. Waste-
water reuse showed a positive correlation with fraction of wastewater treated, degree 
of urbanization, level of water stress, and GDP per capita. The project also discusses 
the situation of wastewater reuse in selected countries of interest, indicating that 
reuse practices, policies, and applications vary across these countries.

A comprehensive compilation of hazardous contaminants in effluent water for 
Swedish domestic and municipal wastewater, greywater, and blackwater was per-
formed from literature. A workflow for literature review, meta-analysis and risk and 
hazard evaluation of contaminants (based on 14 parameters) in effluent wastewater 
was established. In addition, criteria for risk-based scoring, ranking, and prioritiza-
tion of contaminants is also presented. This resulted in a priority list of 119 specific 
chemical contaminants of emerging concern (CECs) that can hinder sustainable 
wastewater reuse. Among the priority chemicals identified, 30 (primarily pharma-
ceuticals) had a risk quotient ≥ 1, indicating ecological risk. Additionally, 16 chemi-
cals were flagged as environmental hazards due to their persistence and mobility, 
while approximately 60 chemicals were associated with positive predictions for at 
least four human health hazards. The 10 highest-priority chemicals were venlafaxine, 
bicalutamide, desvenlafaxine, diclofenac, amoxicillin, clarithromycin, diethyltolua-
mide, genistein, azithromycin, and fexofenadine. Although there can be a number 
of different potential options for wastewater reuse, this report has primary focus 
on agricultural irrigation for wastewater reuse, given that agriculture is the largest 
 consumer of freshwater globally (United Nations, 2024). In Sweden, the reuse of 
 treated municipal wastewater for irrigation could be especially advantageous for 
 farmers in areas that experience significant water shortages during the growing 
 season (Swedish Environmental Protection Agency, 2022).
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The project also looks into available treatment technologies and their combinations 
for removal of these priority chemicals. Information on available advanced treat-
ment technologies and their targeted chemical contaminants are compiled from the 
Swedish literature, and removal efficiencies of five selected technologies (granular 
activated carbon (GAC), ozonation, membrane bioreactor (MBR), nano-filtration 
(NF), and reverse osmosis (RO) for 38 priority chemicals, from international litera-
ture, were used to rank these technologies. Furthermore, it explores the link between 
advanced treatment technologies and the pollutant properties, and provides a cost 
analysis of these selected technologies. Considering its effectiveness to remove CECs 
and the lower cost, GAC, or a combination of technologies, may be used for safe 
wastewater reclamation.

The driving factors of wastewater and sludge reuse are useful for evaluating the 
potential of reusing such resources and development of new water management 
plans on recycling wastewater as sustainable water resource. Chemical pollutants 
identified as impediments to treated wastewater reuse can help in establishing 
criteria for the risk management plans under the EU regulation on wastewater reuse 
(Regulation (EU) 2020/741). The risk characterization and policy support, are greatly 
relevant to the Swedish Environmental Protection Agency for providing guidelines 
on reducing the spread of hazardous pollutants to the environment due to waste-
water reuse. Advanced treatment options and strategies presented here will facili-
tate the municipalities’ responsible for wastewater treatment facilities to consider 
modernizing their existing treatment facilities and even facilities on future plan 
to purify the wastewaters for reuse to a greater extent. Future policy briefs should 
consider to focus on reducing the presence of priority chemicals in effluent water by 
establishing concentration limits and mandating advanced treatment technologies, 
based on removal efficiency and ecological risk assessments. These should be inte-
gral to future regulations. As the dataset is derived from available literature, further 
studies and reanalysis using the meta-analysis workflow will be necessary to address 
potential unknown chemicals.
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1. Introduction
In response to the global challenges of water scarcity and diminishing mineral 
resources, there is a growing consideration for using treated domestic wastewater 
as an alternative supply of water and nutrients. Water reuse and related issues are 
expected to impact world-wide crop production, and consequently the global food 
security (OECD, 2020). Water shortage is expected to affect a quarter of the world 
population by 2050 (United Nations, 2015). Nutrients taken up by food crops end 
up in wastewater and ultimately to receiving water bodies, resulting in nutrient loss 
from soil and disturbance to the ecosystem balance (Steffen et al., 2015). Therefore, 
closing the loop on resources in domestic wastewater is vital for sustainable water 
and agricultural managements in the future. In spite of these potential benefits, 
inadequate wastewater treatment especially for removing hazardous pollutants 
(Sörengård et al., 2019) undermines a safe wastewater reuse. The trade-off between 
wastewater reuse and the risk of hazardous pollutants leads to the research question: 
How safe and viable is wastewater as a resource for a non-toxic circular economy?

Reuse of domestic wastewater is made possible by its proper management and 
sanitation. Municipal effluents comprising wastewaters from different activities/
sources and urban runoffs, is often the source of domestic wastewater for reuse. 
Reuse of municipal effluent stands at around 1 billion m3 in Europe (European 
Commission, 2024). In Sweden, the southern county of Gotland, as an example, 
reuses 2.5 % of its municipal effluent for irrigation (Bio by Deloitte, 2015). However, 
the situation varies across countries and the differences may be explained by various 
factors, such as water availability and water requirement of industry and agriculture 
(Bio by Deloitte, 2015). Consumer perceptions and the economic incentive for the 
operators also influence among other parameters (Swedish Environmental Protec-
tion Agency, 2022). So far, it is unclear what factors drive adoption of reuse practices 
at a national level and identifying these factors can help sustainable management 
of these resources for reuse globally.

Despite the potential benefits of reuse for reaching a circular economy, previous 
studies indicate inadequacy of conventional treatment for removal of many hazard-
ous pollutants present in domestic and municipal wastewater (Gago-Ferrero et al., 
2017; Haalck et al., 2021; Sörengård et al., 2019). Many pollutants are hazardous for 
the environment and/or human health, e.g., antibiotics have public health concern 
linked to antimicrobial resistance (Richardson and Kimura, 2020).

The new EU regulation on wastewater reuse (Regulation (EU) 2020/741) mainly 
impose limits on microorganisms and traditional water quality parameters, but 
do not directly address hazardous pollutants in assessing effluent water quality. 
A  comprehensive overview of the presence of commonly occurring hazardous 
 pollutants in wastewaters and their implications for safe water reuse, their ecolog-
ical risk and environmental and human health hazards, as well as new strategies 
to remove these pollutants for a sustainable reuse of such resources are, therefore, 
 covered in this report of the REASSURE project, via a literature synthesis work 
 striving for answering the following important questions:

1. What factors are the most relevant for explaining cross-national differences in 
the use of wastewater and sludge as a resource?
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2. Are there spatial differences in wastewater reuse and which hazardous pollutants 
are of high concern in conventionally treated wastewaters in Sweden?

3. How can advanced treatment techniques help remove hazardous pollutants to 
facilitate safe reuse?

4. To what extent do hazardous pollutants pose environmental and human health 
risks in treated wastewaters?
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2. Methodology

2.1 Cross-national comparison
In order to study factors affecting cross-national differences in wastewater and 
sludge reuse, various statistics are retrieved from different sources. Data on popula-
tion, gross domestic product (GDP) per capita, degree of urbanization,  agricultural 
irrigated land, level of water stress, and mean annual precipitation etc. were 
obtained from World Bank Open Data1. Annual mean surface air temperature 
(measured at 1.5–2 m height) data was obtained from World Bank Climate Change 
Knowledge Portal2. Linear regression was carried out between these parameters and 
fractions of wastewater reused. Spearman correlation coefficients (rs) were also 
calculated. Data on national wastewater production, collection, treatment and reuse 
was taken from Jones et al. (2021) based on reported and predicted values. Fraction 
of wastewater reused (%) was calculated as the ratio of wastewater reused to waste-
water produced. Data for production and reuse of sludge in Europe was obtained 
from Eurostat3. Fraction of sludge reused was calculated as ratio of sludge agri-
cultural use to sludge production for 21 countries with available data. Most recent 
available data was used unless a much larger amount of data was available for near, 
previous years.

The top-four countries in the three categories of wastewater reuse, i.e., (1) total 
reuse of wastewater, (2) per capita reuse of wastewater, and (3) reuse as a percentage 
of total water extracted (Jimenez and Asano, 2008), were selected for further study 
in this project. This resulted in eight countries (China, Mexico, USA, Egypt, Qatar, 
Israel, Kuwait, and Singapore). Six other countries (Chile, Spain, Namibia, Cyprus, 
Australia, and Malta) are also considered so that it represents all major  geographical 
regions of the world. These additional countries were selected from the top 20 in 
the three categories described above. Sweden was also included in the selection 
for comparison.

2.2 Characterization of hazardous 
pollutants in effluent water quality

2.2.1 Data compilation and pre-processing
A comprehensive literature review of scientific articles and grey literature was 
 carried out on Web of Science, Scopus, DiVA portal, and Google scholar using care-
fully developed and validated search strings both in English and Swedish languages 
(Annex-I). Quality check of the search string was carried out using names of indi-
vidual contaminants instead of group of contaminant. The results were validated by 
relevant key articles well-known to the authors. Abstract screening of the obtained 

1 https://data.worldbank.org/
2 https://climateknowledgeportal.worldbank.org/
3 https://data.europa.eu/en

https://data.worldbank.org/
https://climateknowledgeportal.worldbank.org/
https://data.europa.eu/en
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scientific articles was carried out using Rayyan (Ouzzani et al., 2016). Literature 
 published during January 2000 to October 2022 was included. List of  scientific 
 articles and gray literature included in the study is presented in  Appendix-I. 
Extracted information and data from the selected articles and grey literature 
included contaminant name and group, concentrations in influent and/or effluent, 
detection/quantification limits, numbers of samples, wastewater type, treatment 
plant details, and sampling methods. In assessment of full texts, we divided hits 
(both scientific articles and grey literature) into three different categories: i) waste-
water, ii) sludge, and iii) pilot studies with new technologies.

Data pre-processing included screening for duplicates with different names but 
same Chemical Abstract Service (CAS) numbers. A meta-analysis workflow adapted 
from Löffler et al. (2023) was developed based on occurrence and on risk and  hazard 
assessment of chemical contaminants (Figure 1). For further data analysis and 
 discussion, we focused on substances that had at least 20  quantifiable data points 
in the dataset and quantifiable frequency of more than 50 %. This resulted in 128 
contaminants, comprising 119 chemical contaminants, five metals, and four  linear 
alkylbenzene sulfonate compounds. The alkylbenzene sulfonate compounds 
were excluded from further risk and hazard assessment due to a lack of unique 
CAS  numbers. Concentrations of linear and branched per- and polyfluoroalkyl 
substances (PFAS), when reported separately, were combined in the dataset for 
consistency.

Figure	1:	Meta-analysis	workflow,	comprising	literature	search,	risk	and	hazard	assessment,	
scoring,	and	prioritization	of	substances.	RQ:	risk	quotient;	FoE:	frequency	of	exceedance;	
EoE:	extent	of	exceedance.	Adapted	from	Khan	et	al.	(2024).
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2.2.2 Ecological risk assessment and health hazard 
prediction

2.2.2.1	 ECOLOGICAL	RISK	ASSESSMENT
Ecological risk assessment for each chemical was carried out by comparing the 
measured concentration in wastewater treatment effluent against predicted no- 
effect concentration (PNEC). Ecotoxicological data for chemicals was collected from 
sources such as the US EPA ECOTOX database (USEPA, 2023), the Swedish FASS 
pharmaceuticals database (FASS, 2023), the Pesticides Properties Database (PPDB, 
2023), European Chemicals Agency (ECHA, 2023), and the scientific literature. 
PNECs were determined as per European guidelines for risk assessment (ECHA, 
2008; EMA, 2018). For most sensitive species, an appropriate assessment factor was 
applied. Chronic ecotoxicity data from standard test species for algae, daphnids, and 
fish were applied by preference, but also data for non-standard species depending 
on data availability. Quantitative structure activity relationship (QSAR) data (ECO-
SAR, 2023) were obtained for data-poor chemicals and an assessment factor of 1 000 
was applied to the acute toxicity value for the most sensitive species.

Conventional ecological risk quotient (RQ) (Equation 1) was calculated for each 
chemical:

,
 (1)

where MECeff,max is measured environmental concentration, taken as the maximum 
effluent concentration in the dataset, and PNEC is the predicted no-effect concentra-
tion. As effluent water reuse provides an alternative to the common practice of using 
surface water, groundwater or drainage water for irrigation in some areas of Sweden 
(Swedish Agency for Marine and Water Management, 2022), assessment of effluent 
water quality in terms of ecological risk is carried out with a consideration of PNEC 
concerning aquatic organisms.

Frequency of exceedance (FoE) (Equation 2) and extent of exceedance (EoE) 
(Equation 3) (Alygizakis et al., 2019; Slobodnik et al., 2012), two additional risk 
parameters were also included:

 (2)

, %
 (3)

where n is number of data points of effluent concentrations above PNEC, N is total 
number of data entries including both quantifiable and non-quantifiable data points, 
and MECeff,95%tile is measured effluent concentration of a chemical contaminant at 
the 95th percentile of the dataset.

A probabilistic risk assessment was also performed, adapting the  methodology 
of Hanna et al. (2023). For this, reported concentrations were ranked in  ascending 
order and percent rank (j) were assigned to them using the Weibull model 
( Equation 4), where i is the numerical rank and n is the number of data points. 
Linear regression was used to fit percent rank against the log transformed effluent 
concentrations. Regression coefficients were used to estimate the centile values 
corresponding to PNECs (Equation 5).
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100
1

 (4)

centile value slope PNEC intercept  (5)

2.2.2.2	 ENVIRONMENTAL	HAZARD	PREDICTION
Environmental hazard indicators, persistence (P), mobility (M), and bioaccumu-
lation (B) were predicted using VEGA in silico platform (version 1.2.3), following 
Löffler et al. (2023). The following models were used: i) IRFMN (version 1.0.1) for 
persistence in water (half-life), ii) IRFMN (version 1.0.2) for water solubility, iii) Opera 
(version 1.0.1) for organic carbon-water partitioning coefficient, KOC, and iv) CAESAR 
(version 2.1.15) for bioconcentration factor (BCF).

2.2.2.3	 HUMAN	HEALTH	HAZARD	PREDICTION
The concept for evaluating human health hazards used in this study was adapted 
from Bruks et al. (2022, 2021), Löffler et al. (2023), and Menger et al., (2023). The 
concept is based on using in silico approaches for predicting mutagenicity, carcino-
genicity, developmental toxicity, skin sensitization, estrogen receptor effect, 
androgen receptor effect, hepatoxicity, and P-glycoprotein activity as proxies for 
human health hazards. The following models were used: Mutagenicity (Ames test) 
Consensus model (v.1.0.4), Carcinogenicity model (CAESAR) (v.2.1.10), Develop-
mental  Toxicity model (CAESAR) (v2.1.8), Skin Sensitization model (CAESAR) 
(v.2.1.7),  Estrogen Receptor-mediated effect (IRFMN-CERAPP) (v.1.0.1), Androgen 
receptor-mediated effect (IRFMN-COMPARA) (v.1.0.1), Hepatoxicity model (IRFMN) 
(v.1.0.1), and P-Glycoprotein activity model (NIC) (v1.0.1).

Performance of environmental and human health hazard prediction models 
were evaluated by cross-checking inclusion of the priority list chemicals in the 
respective training and test datasets of the models. Most models included between 
5 and 48 of the ranked chemical contaminants (Khan et al., 2024). However, skin 
sensitization model contained only one chemical from the list and P-glycoprotein 
activity model  contained none, so estimates of these should be treated with caution.

2.2.3 Scoring and prioritization
The risk and hazard parameters were scored against criteria for ecological risk, and 
environmental and human health hazards (Table 1). Each parameter, except FoE, is 
given a score of either 0 when there is no risk or a negative hazard, or 1 when there is 
risk or a positive hazard. For FoE, the calculated numerical value was used as score.

The overall score of the ecological risk assessment (ScoreEco) (Equation 6) was 
calculated as:

 (6)

The overall score of predicted environmental hazard (ScoreEH) (Equation 7) was 
estimated as:

∑
 (7)

where ni represents the scores for persistence, mobility, and bioaccumulation.
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The overall score of human health hazard (ScoreHH) (Equation 8)  was calculated as:

∑
8

 (8)

where ni represents scores for mutagenicity, carcinogenicity, developmental toxicity, 
skin sensitization, estrogen receptor effect, androgen receptor effect, hepatoxicity, 
and P-glycoprotein activity.

Table 1: Parameters and related scoring criteria used when prioritizing chemical contaminants 
of emerging concern (CECs) in effluent wastewater (Khan et al., 2024).

 Parameter Risk/hazard 
(score 1)

No risk/hazard 
(score 0)

 RQ > 1 < 1
Ecological risk EoE > 1 < 1
 FoE Not applicable Not applicable
 Persistence 

(half-life in water) >	40	days <	40	days

Environmental hazard Mobility 
(solubility	and	log	Koc 
(log	L/kg))

>	0.15	mg/L	and	≤	4.5 <	0.15	mg/L	and	≥	4.5

 Bioaccumulation 
(log BCF) 
(log	L/kg	wet	weight)

> 3.3 < 3.3

 Mutagenicity   
 Carcinogenicity   
 Developmental	toxicity   
Human health hazard Skin sensitization Positive Negative
 Estrogen receptor 

effect
  

 Androgen receptor 
effect

  

 Hepatoxicity   
 P-glykoprotein	activity   

A final score (Equation 9) of each chemical contaminant was obtained:

    (9)

The final scores of each chemical were ranked in descending order to obtain a risk 
based priority list. Maximum score of ScoreEco was 2 compared to 1 for ScoreEH and 
ScoreHH each, therefore ScoreEco had a higher weight on the final score. The maximum 
final score was 4, representing the highest concern, and the minimum was 0, indi-
cating the lowest concern.
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2.3 Compilation of information on 
advanced treatment technologies

Information on available advanced treatment technologies and their targeted 
 chemical contaminants are compiled from the Swedish literature (see 3.2.1). For 
 simplicity and conciseness of these information, all membrane technologies were 
categorized as one technology, i.e., membrane filtration, which includes ultra- 
filtration, nano-filtration (NF) and reverse osmosis (RO), except for  membrane 
bioreactor (MBR) as another category of membrane technology alone, and also 
both granular activated carbon (GAC) and powdered activated carbon (PAC) 
were  categorized as activated carbon. For further detailed analysis (correlations), 
we focused on five commonly used technologies in water treatment, i.e., GAC, 
ozona tion, MBR, NF, and RO. They also have different mechanisms in removals 
of  contaminants, including adsorption and biodegradation for GAC, chemical 
reactions for ozonation, and size exclusion for MBR, NF and RO. Their maximum 
reported removal efficiency for the priority chemicals (n = 38, first quartile in the 
priority list and substances included in the proposed revisions to EU’s Urban Waste 
Water Treatment Directive (UWWTD) (COM(2022) 541 final) (European Commission, 
2022) was obtained from scientific literature. The search was conducted on Web of 
Science, Scopus, and Google Scholar by using keywords for the respective chemicals 
and treatment technologies. Based on the mean of maximum removal efficiencies 
for all the reported chemicals, individual advanced treatment technologies were 
ranked to show their adequacy to effectively remove these priority chemicals. The 
goal is to assess the maximum capability of the technology. This means we aim 
for studies that demonstrate the highest possible removal efficiency achievable 
with a specific technology. In other words, the maximum represents the highest 
 performance threshold the technologically can reach, which is the key factor we are 
interested in when comparing different technologies. We also explored correlation 
(Spearman correlation coefficient) between physicochemical properties (octanol- 
water partitioning coefficient, log Kow; water solubility; organic carbon-water parti-
tioning coefficient, log Koc; acid dissociation constant, pKa; and molecular weight) 
of these chemicals and their removal through the selected advanced treatment 
technologies. Molecular weight and pKa values were obtained from online sources 
(predominantly PubChem database) and the rest of the properties were determined 
using VEGA in silico platform (version 1.2.3). Capital, operation and maintenance, 
and energy costs of the advanced treatment technologies were also determined from 
literature and compared.
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3. Results and Discussion

3.1 Cross-national differences in 
wastewater reuse

Global wastewater reuse is estimated to be around 41 billion m3/year,  representing 
only 11 % of the produced wastewater (Jones et al., 2021). The fraction highly  varies 
between countries, with some reusing very high proportion of their  produced waste-
water (e.g., United Arab Emirates (UAE) (100 %), Israel (92 %), Kuwait (89 %), and 
Qatar (89 %)), while some others, mainly countries with low treatment levels or 
high availability of water resources, reusing very low proportions (Jones et al., 
2021). Different factors that represent national climate, socio-economic  conditions, 
and situation of water resources were explored to determine factors that can 
 predict the potential of reusing treated wastewater in a country. Fraction of waste-
water reused was positively correlated (Figure 2) with GDP per capita (rs = 0.65), 
urbanization (rs = 0.54), level of water stress (rs = 0.47), agricultural irrigated land 
(rs = 0.26) and fraction of wastewater treated (rs = 0.76), and negatively correlated 
with average annual precipitation (rs = −0.37) (figur 2). All these correlations were 
statistically  significant (p < 0.05). However, linear and quadratic regression models 
did not  provide a good fit to the data as indicated by the low R2 values, suggesting 
that multiple variables should be taken into account to reliably predict wastewater 
reuse potential. For countries with missing data on wastewater reuse, estimations 
based on irrigation water scarcity, level of wastewater treatment, and desalination 
capacity per capita were used in the source dataset (Jones et al., 2021), therefore, 
these  correlations should be treated with caution. GDP and water stress have been 
identified as the main influencing factors for wastewater treatment and reuse, 
respectively, in Asia (Liao et al., 2021). Almost all the countries with water stress 
levels well above 100 % (Kuwait, UAE, Saudi Arabia, Libya, Qatar) are located in the 
middle east, the region which accounts for 39 % of the global desalination capacity, 
indicating that it is severely constrained in terms of fresh water availability (Eke 
et al., 2020). These countries generally have very high rate of water reuse (89–100 %), 
except Libya and Saudi Arabia which reuse only 18 % and 33 % of their wastewater, 
respectively.
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Figure	2.	Regression	analysis	between	the	fractions	of	wastewater	reused	(ratio	of	the	amount	
of	wastewater	reused	to	that	of	the	wastewater	produced	in	a	country)	and	A)	GDP	per	capita	
(current USD) (n = 208), B) urban population as a percentage of total population (n = 214), C) 
agricultural irrigated land as percentage of total agricultural land (n = 67), D) level of water 
stress	represented	by	ratio	of	total	freshwater	withdrawn	and	total	renewable	freshwater	
resources	(%)	(n	=	178),	E)	level	of	water	stress	(excluding	countries	with	>	100	%	water	stress)	
(n	=	161),	F)	average	precipitation	in	depth	(mm	per	year)	(n	=	182),	G)	mean	annual	temperature	
(°C) (n = 212), and H) fraction of wastewater treated (ratio of treated wastewater and produced 
wastewater) (%) (n = 214).

Factors affecting sludge reuse were only explored for Europe due to data availability. 
Only two factors, agricultural irrigated land (rs = −0.47) and mean annual tempera-
ture (rs = −0.74), had significant correlation with sludge reuse (Figure 3). Wastewater 
reuse and sludge reuse were inversely correlated (rs = −0.35) (Figure 4), but the corre-
lation was not significant (p = 0.1). This may be explained by differences in drivers 
and motivation for the adoption of sludge reuse and wastewater reuse. Water reuse is 
motivated by limited availability of fresh water resources while sludge reuse is rather 
driven by the agricultural requirement of nutrients. As droughts and warm  periods 
are predicted to intensify under climate change (Vicente-Serrano et al., 2020), 
more and more countries will find it necessary to explore opportunities for waste-
water reuse. Similarly, climate change induced alterations in nutrient cycling and 
 availability (Brouder and Volenec, 2008) will also influence the future role of sludge 
in crop fertilization. For wastewater treatment plant operators, incentive to  reusing 
sludge also comes from the high costs associated with sludge disposal (Domini 
et al., 2022).



SWEDISH ENVIRONMENTAL PROTECTION AGENCY REPORT 7174
To reuse or not: is purified wastewater a non-toxic and sustainable resource for the future? (REASSURE)

17

Figure 3.	Regression	analysis	between	the	fraction	of	sludge	reused	(ratio	of	the	amount	
of	sludge	reused	to	that	of	the	sludge	produced)	and	A)	GDP	per	capita	(current	USD)	(n	=	21),	
B) urban population of total population (%) (n = 21), C) agricultural irrigated land of total agri-
cultural	land	(%)	(n	=	19),	D)	level	of	water	stress	represented	by	ratio	between	total	freshwater	
withdrawn and total renewable freshwater resources (%) (n = 21), E) average precipitation in 
depth	(mm/year)	(n	=	21),	F)	and	mean	annual	temperature	(°C)	(n	=	21).	Data	covers	countries	
in Europe.

Figure 4.	Regression	analysis	between	the	fraction	of	sludge	reused	and	the	fraction	of	waste-
water reused (n = 21).
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There are varying situations of wastewater reuse across the selected countries in this 
project (Table 2). In Sweden, ~ 80 % of the produced wastewater is treated but less 
than 1 % is reused (Jones et al., 2021) (Table 2). A very low level of water stress at 3.5 % 
appears to not incentivize reusing wastewater over freshwater extraction, unlike 
some other countries with high water stress, e.g., United Arab Emirates (1 600 %), 
Qatar (431 %), and Israel (100 %). However, agricultural irrigated land makes up only 
1.7 % of total agricultural land in Sweden and most of the crops are rain-fed (Grusson 
et al., 2021), therefore potential for wastewater reuse for agricultural irrigation exists 
during dry periods. In a recent report of the Swedish Environmental Protection 
Agency (2022) that analyzed measures for implementing EU regulation for water 
reuse (Regulation (EU) 2020/741), there are areas identified in the south where irriga-
tion is needed during the growing seasons and hence have potential for reuse. Reuse 
in industry and irrigation of non-agricultural areas, e.g., golf courses, can also 
be a viable option. The study (Swedish Environmental Protection Agency, 2022) also 
concluded that public attitude towards irrigation with treated wastewater will be a 
decisive factor for the future of agricultural wastewater reuse in Sweden. In Sweden, 
the predominant water usage is for industry. Manufacturing industry accounts for 
61 % of water consumption, followed by households at 23 %, other sectors at 13 %, 
and agriculture at 3 % (Swedish Agency for Marine and Water Management, 2022).

Cyprus and Malta are among the European countries with very high fraction 
of wastewater reuse, both reusing ~ 65 % (Table 2) of their wastewater (Duong and 
Saphores, 2015; Jones et al., 2021), although the level of water stress is quite different 
between the two countries, i.e., 32 % for Cyprus and 81 % for Malta. The countries 
are very similar in terms of climate (mean annual temperature and average precipi-
tation, GDP per capita, and proportion of agricultural irrigated land). In addition, 
fraction of wastewater treated is also quite different, with Cyprus treating 62 % 
of wastewater while Malta treating 100 % (Jones et al., 2021).

In Spain, about a quarter of the produced wastewater is reused (Table 2) and 
more than 80 % of the total reuse takes place for agricultural irrigation and for urban 
irrigation (e.g., parks and recreational areas) (Jodar-Abellan et al., 2019; Jones et al., 
2021). Demand for non-conventional water sources, like desalination and reclaimed 
water, are the highest in the southeastern region of the country, which has the 
lowest amount of available fresh water, and more than three quarters of agricultural 
irrigation reuse takes places in two southeastern river basin districts, i.e., Segura 
and Júcar (Jodar-Abellan et al., 2019). Spanish regulation for water reuse (Real 
Decreto 1620/2007) defines water quality limits for five classes (and 14 sub-classes) 
of intended water reuse. In all the classes, common parameters include intestinal 
nematodes, coliform bacteria (Escimerichia Coli), suspended solids, and turbidity. In 
addition, for most of the sub-classes, specific criteria, e.g., compliance with environ-
mental quality standards for hazardous substances, are needed. However, a new 
legislation, i.e., urgent measures in agricultural and water matters (Real Decreto-Ley 
4/2023) repealed any provisions of the previous regulation 1620/2007 in conflict with 
the recent EU water reuse regulation (Regulation (EU) 2020/741).

In Egypt, WWTPs are mostly located in urban areas and serve about 60 % of the 
population (Tawfik et al., 2021). Despite being illegal, reuse of untreated wastewater 
for irrigation is common in the Nile Delta, which takes place through discharge of 
untreated wastewater into the environment, including agricultural drains ( Tawfik 
et al., 2021). This has led to increased concentrations of contaminants, such as 
 metals in soil (Alnaimy et al., 2021). The relevant Egyptian code (ECP 501-2015) 
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prohibits reuse of treated wastewater for irrigating raw-eaten vegetables (Abdella 
Ahmed et al., 2022). For other irrigation uses, four categories of treated  wastewater 
have been defined based on treatment levels to irrigate specific crops (Abdella 
Ahmed et al., 2022).

Qatar meets its entire water demand from seawater desalination (Ahmad and 
Al-Ghouti, 2020), although its fraction of wastewater reused accounts for ~ 90 % 
(Table 2). Around 39 % of treated wastewater in Qatar is used for agriculture, and 
other avenues of reuse have been identified, such as, in district cooling industries 
and construction sector etc. (Jasim et al., 2016). Groundwater is used at a rate four 
times its replenishing rate, indicating high water stress (Qatar Foundation, 2022). 
Treated wastewater is mostly used to recharge groundwater aquifers, as well as 
for irrigation of greenbelts, growing animal fodder, injected in deep aquifers, or 
discharged to lagoons and sea (Jasim et al., 2016; Qatar Foundation, 2022).

In Israel, the fraction of wastewater reused is ~ 90 % (Table 2). Treated wastewater 
fulfills ~ 50 % of the irrigation water demand and supports 25 % of all water demand 
(Fanack Water, 2023; Rahav et al., 2017). Around 80 % of the treated wastewater is 
used for irrigation, and most orchards in Israel are irrigated with treated  wastewater 
(Rahav et al., 2017). Israel also relies heavily on desalination, which  provides 50 % 
of the potable water supply (Fanack Water, 2023). There are special rules for  granting 
permits for agricultural irrigation based on treatment level of the waste water and 
 barriers between wastewater and fruit. In addition, there are requirements such as 
field locations, warning signs, and measures to prevent contamination of  drinking 
water (Ministry of Health, 2023). For irrigation of public gardens, there are also 
detailed guidelines for safe operation of co-existing double water systems, i.e., 
a drinking water system and a treated water system (Ministry of Health, 2023).

Kuwait gets its potable water through seawater desalination, but still treats and 
reuses ~ 90 % their wastewater (Table 2). One of the four WWTPs in Kuwait has a 
reverse osmosis and ultra-filtration based reclamation plant, the effluent of which is 
utilized for crop and natural reserve irrigation, while the others have conventional 
treatments up to a tertiary level for effluent water reuse for landscape and fodder 
irrigation (Aleisa, 2019).

The United States (US) produces around 62 billion gallons (234 million m3) 
of treated wastewater everyday through 16 000 WWTPs (ASCE, 2021). The fractions 
of wastewater treated and reused in the US are 68 % and 13 %, respectively (Table 2) 
(Jones et al., 2021). In the guidelines for wastewater reuse by the US’s  Environmental 
Protection Agency (USEPA, 2012), reclaimed water quality is defined for various 
reuse categories, including urban, agricultural, environmental and industrial reuse, 
impoundments, groundwater recharge, and indirect potable reuse. Agricultural 
water reuse guidelines include pH, BOD4, turbidity, fecal coliform and residual 
 chlorine. In addition to the USEPA guidelines, many US states have their own guide-
lines and regulations (Shoushtarian and Negahban-Azar, 2020; USEPA, 2012).

In Mexico, around 63 % of the wastewater produced is treated and ~ 70 % of the 
treated flowrate is discharged into various water bodies according to Tabla-Vázquez 
et al. (2020). The rest (~ 30 %) is mainly used for irrigation in agricultural lands, golf 
courses etc. A similar estimate of 43 % wastewater reuse was provided in Jones et al. 
(2021) (Table 2). In addition to the treated wastewater, untreated wastewater is also 

4 Biochemical oxygen demand.
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reused for agricultural irrigation. A study in the Mezquital valley reported 50 m3/s of 
untreated wastewater irrigating 80 000 ha of agricultural land, leading to accumula-
tion of hazardous contaminants, especially metals in the soil and crops (Ponce-Lira 
et al., 2020).

In Chile, more than 70 % of WWTPs provide treatment up to the secondary 
treatment stage and the wastewater can only be reused for irrigation of non-food 
crops (Villamar et al., 2018). Most of the wastewater is discharged into different 
water bodies and less than 1 % is reused for irrigating animal feed crops, grasslands 
etc. (Villamar et al., 2018).

China shows a steady increase in wastewater reuse during recent years,  reaching 
around 13 billion m3/year in 2019 (Qu et al., 2022). Even with these volumes, 
reclaimed water represents less than 1 % of the total water use (Zhu and Dou, 2018). 
Reuse is most widely practiced in Beijing and Tianjing. Most of the reclaimed water 
is used to improve urban landscape and ecology (Qu et al., 2022). Only 12 out of 
the 31 provinces in China use reclaimed water for agricultural irrigation, and only 
5  provinces use it for groundwater recharge as there is a cautious attitude towards 
these practice due to perceived environmental risks (Zhu and Dou, 2018).

In Singapore, ~ 40 % of potable water comes from reclamation (Kog, 2020). Four 
reclaimed water plants, based on conventional wastewater treatment and membrane 
filtration (microfiltration/ultra-filtration/reverse osmosis) with UV disinfection, 
provide the treated wastewater for industrial reuse and indirect potable reuse after 
re-mineralization in reservoirs (Lefebvre, 2018). Options for direct potable reuse are 
also being explored as the next step.
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Table 2. GDP per capita (current USD), agricultural irrigated land (%), level of water stress (%), average precipitation (mm/year), fraction of wastewater treated (%), and 
fraction of wastewater reused (%) for selected countries.

Region/ 
continents

Country GDP/capita* 
(current USD)

Agricultural irrigated 
land of total 

agricultural land* 
(%)

Level of water 
stress* 

(%)

Average 
precipitation 

in depth* 
(mm/year)

Fraction of 
wastewater 

treated** 
(%)

Fraction of wastewater 
reused** 

(%)

Europe Sweden 52 838 1.7 3.5 624 80 0.6
 Spain 26 984 14 40 636 71 24
 Cyprus 28 281 21 32 498 63 63
 Malta 29 598 36 81 560 100 67
Middle	east/
North Africa

Egypt 3 572 NA 141 18 57 23

Middle east Qatar 52 316 NA 431 74 89 89
 Israel 44 847 32 100 435 92 92
 Kuwait 24 298 NA 3 850 121 89 89
North America United States 63 529 NA 28 715 68 13
 Mexico 8 895 5.8 45 758 43 20
South America Chile 13 174 NA 9 1 522 84 3.5
Asia China 10 409 NA 44 645 49 14
Sydöstra	Asien Singapore 61 274 NA 82 2 497 100 44
Africa Namibia 4 252 NA 0.86 285 21 21
Oceania Australia 51 868 0.63 4.2 534 93 49

NA:	not	available;	*World	Bank	Open	Data;	**based	on	Jones	et	al.	(2021).
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3.2 Current and future reuse needs 
in Sweden

According to the Swedish EPA report (2022), only a few Swedish counties have 
arrangements for wastewater reuse for irrigation, such as, Gotland, Kalmar, Skåne, 
and Uppsala. Combined risk of water shortage based on climate, storage capacity 
and water use is presented by Stensen et al. (2019), with higher risk observed in 
southern Sweden (Figure 5). Using this information, it can be seen that many more 
counties in addition to those mentioned above, such as Stockholm, Södermanland, 
and Västmanland could benefit from the availability of and access to treated waste-
water for irrigation. There is around 1.2 billion m3 of treated wastewater produced 
annually in Sweden5 which can be used for this purpose. The reasons for limited 
reuse at the moment include public and farmer concern about hazardous  pollutants 
in treated wastewater, similar to concerns around spreading wastewater sludge 
(Ekane et al., 2021) and uncertainty about future water quality regulations (Takman 
et al., 2023).

Figure	5.	Risk	of	water	scaricity	in	Sweden	based	on	climate,	storage	capacity	and	individual	
water use. 1 represents lowest risk and 5 represents highest risk. Figure taken from Stensen 
et al. (2019).

5 https://www.statistikdatabasen.scb.se/

https://www.statistikdatabasen.scb.se/
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3.3 Chemicals as impediments to reuse
A priority list of 119 chemicals (Figure 6) was obtained after scoring and ranking 
according to ecological risk and environmental and human health hazards (Table 1) 
(Khan et al., 2024). These chemicals can be considered as the main impediments to 
wastewater reuse in Sweden. Pharmaceuticals made a large part of the list with 69 
chemicals, which is in line with the recent rise in concerns associated with pharma-
ceuticals and their risk (Chaturvedi et al., 2021; Wang et al., 2021). Top eighteen 
chemicals on the list had a final risk score of 2–3 out of a maximum score of 4. These 
include 15 pharmaceuticals, two personal care products, and an industrial chemical. 
Four antibiotics (amoxicillin, clarithromycin, azithromycin, and ciprofloxacin) are 
included in the top eighteen chemicals, and the risk quotient of antimicrobial resist-
ance (RQAMR ) was > 1 for three of these: ciprofloxacin (RQAMR = 17),  clarithromycin 
(3.1), and amoxicillin (1.1). RQAMR was based on PNEC of resistance selection from 
a previous study (Bengtsson-Palme and Larsson, 2016). Two additional antibiotics, 
metronidazole and trimethoprim included in the list of 119 chemicals had RQAMR > 1. 
In addition, OH-metronidazole, a transformation product of metronidazole, also 
showed RQAMR > 1 based on PNECAMR of the parent compound (Löffler et al., 2023). 
Predicted environmental concentrations in soil and crops with Swedish irrigation 
context can be found in Khan et al. (2024).
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Figure 6. Final scores, score of ecological risks (ScoreEco), score of environmental hazards 
( ScoreEH) and score of human health hazards (ScoreHH)	for	high-priority	chemical	contaminants	
of	concern	(CECs)	in	effluent	water	(Khan	et	al.,	2024).
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Nine out of the 13 suggested chemicals in the proposed revisions to the EU urban 
wastewater treatment directive (UWWTD) (COM(2022) 541 final) ( European 
 Commission, 2022) are included in the list. These chemicals are diclofenac, 
 clarithromycin, venlafaxine, benzotriazole, carbamazepine, citalopram, hydro-
chlorothiazide, irbesartan, and metoprolol. Four chemicals from the UWWTD are 
not in the list: amisulpride, candesartan, and two methylbenzotriazole isomers. 
Among the 119 prioritized compounds in this study, 31 are also included in the 
53 priority compounds evaluated based on only ecological risk for recipient aquatic 
environments (Yang et al., 2022).

3.3.1 Ecological risk assessment
Thirty of the chemicals on the list had RQ ≥ 1, which included 26 pharmaceuticals, 
one food additive, one insect repellant, one antimicrobial agent, and one  industrial 
chemical (Table A1). Clarithromycin had the highest RQ and EoE values of 390 
and 79, respectively, followed by venlafaxine and diclofenac with RQ of 114 and 
108, respectively, and EoE > 1. The number of chemicals showing risk was reduced 
from 30 to 24 for EoE > 1 (Table A1). Chemicals no longer showing ecological risk 
included bezafibrate, carbamazepine, codeine, metoprolol, thiabandazole, and 
tramadol. Highest concentration of some of these chemicals were measured in 
treated black water (carbamazepine and metoprolol) (Leven et al., 2016) or domestic 
wastewater treated in soil beds (thiabendazole) (Blum et al., 2017), which may be the 
reason for the difference between the highest concentration and the 95th  percentile 
 effluent concentration. For the other chemicals, sampling method, sampling 
 season, or size and features of the WWTPs can be the reason for the difference. Some 
 chemicals were almost always encountered in treated effluent in concentrations 
well above their respective PNECs as shown by their high FoE, e.g., bicalutamide 
(0.97) (Table A1). On the other hand, some rarely had concentrations above their 
PNECs, e.g., metoprolol and carbamazepine, which had the lowest FoE of 0.01. 
Highest overall ecological score was for bicalutamide (ScoreECO = 1.97), followed 
by  fexofenadine, diclofenac, venlafaxine, and amoxicillin (Figure 6). Influent and 
effluent concentration ranges along with the probabilistic risk assessment for all 119 
priority chemicals are presented in Khan et al. (2024).

3.3.2 Environmental hazard assessment
A majority of chemicals had ScoreEH of 0.33, indicating that they exceeded the 
threshold for at least one of the three hazard criteria (persistence, mobility, 
 bioaccumulation) (Figure 6, Table A2). 17 chemicals exceeded thresholds for two 
criteria (ScoreEH = 0.67), with 16 predicted to be persistent and mobile but not bio-
accumulative, and one (perfluorohexanesulfonic acid) predicted to be mobile and 
bioaccumulative but not persistent. The only chemical with ScoreEH = 1 was PFOS, 
which is well known for its properties of being persistent, mobile and bioaccumula-
tive (Brunn et al., 2023).
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3.3.3 Human health hazard assessment
Around half of the 119 chemicals had positive predictions for at least four of the 
eight health hazard parameters (Figure 6, Table A3). Two chemicals ( progesterone 
and tramadol) had positive predictions for seven out of the eight parameters, 
resulting in the highest ScoreHH of 0.88. These chemicals predicted negative only 
for  mutagenicity. 59 chemicals had positive predictions for four to six health hazard 
parameters resulting in ScoreHH of 0.5–0.75. Most common parameters with  positive 
predictions were skin sensitization, developmental toxicity, hepatoxicity, and 
 carcinogenicity. Lowest ScoreHH was 0.12, which was for ramipril and salicylic acid.

3.4 Microplatics and metals as impediments 
to reuse

One of the major sources of microplastics in the environment are WWTPs ( Murphy 
et al., 2016). In our literature study, microplastics data were reported by eight 
articles. Conventional WWTPs are generally considered effective in removing 
microplastics (Kelly et al., 2021; Murphy et al., 2016). For example, Rasmussen et al. 
(2021) reported 99 % removal of microplastics < 0.5 mm. However, there is still poten-
tial for release of large quantities of microplastics from WWTPs, especially from 
those with high flow rates (Kelly et al., 2021; Murphy et al., 2016). Microplastics are 
a concern for reuse of sewage water for irrigation because crops can take up micro-
plastics (Li et al., 2020), leading to contamination of food chains. Direct transfer 
from soil to fauna can also happen (Huerta Lwanga et al., 2017). In marine species, 
microplastics can not only cause blockage of digestive tracts, but can also cause 
toxicity through bioaccumulation of toxic substances (Derraik, 2002). Microplastics 
are considered a concern in the revised UWWTD (COM(2022) 541 final) (European 
Commission, 2022) with mandatory monitoring in influent, effluent and sludge for 
agglomerations of 10 000 population equivalent and above.

A number of metals from various sources can make their way to WWTPs (Sörme 
and Lagerkvist, 2002). Five metals in our dataset fulfilled the criteria for selection 
(≥ 20 quantifiable data points and quantifiable frequency > 50 %), including cobalt 
(Co), nickel (Ni), copper (Cu), lead (Pb), and zinc (Zn). All of these, except Co, are 
also included in the EU sludge directive (DIRECTIVE 86/278/EEC) along with 
their limit values. In addition to these, the sludge directive also includes cadmium 
(Cd),  mercury (Hg), and chromium (Cr). In the dataset, the removal efficiency of 
these metals were: Co (32 %), Ni (37 %), Cu (89 %), Pb (97 %), and Zn (87 %) (details 
 presented in Khan et al. (2024)). Highly variable metal removal in WWTPs suggests 
that metal accumulation can take place in soil and crops irrigated with treated 
wastewater. Risk and hazard assessment for metal is more complicated compared to 
organic chemicals, especially when information about specition of metals is missing 
from the reported concentration, as speciation affects the toxic affects and hazard 
of metals (Uchimiya et al., 2020). Therefore, it is essential that information about 
 speciation is included in monitoring plans, and/or determined by modeling and 
computational methods (Matheri et al., 2022).
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3.5 Upstream source tracing
Managing the substances identified as obstacles to wastewater reuse is necessary 
for safe wastewater reuse. Management approaches can include removal in WWTPs 
and/or reducing inflows of these chemicals to WWTPs. The latter essentially requires 
upstream source tracing of these hazardous substances and employing approaches 
for reducing their production and for better handling/disposal to prevent their 
entry into municipal WWTPs (Fairbairn et al., 2016). For pharmaceuticals, that also 
comprise the majority of the priority chemicals on our list, production and sales data 
is usually maintained by pharmaceutical companies which can be used to track and 
control their sources. For other chemicals, sources within the catchment of individ-
ual WWTPs would need to be identified in the future and addressed based on levels 
of risk posed by them and available measures to mitigate the risk.

3.6 Advanced treatment technologies
In total, 31 technologies and related combinations were explored in the Swedish 
literature targeting various contaminants of emerging concern (Figure 7) in domestic 
and municipal wastewater. Major focus of these studies has been on pharmaceut-
icals, while some also explored microplastics and other organic micropollutants, 
such as PFAS and industrial chemicals. Ozonation and activated carbon along with 
their various combinations were the most frequently studied technologies (Figure 7).
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Figure	7.	Illustration	of	techniques	used	to	remove	organic	micropollutants	in	wastewater	
according	to	the	studied	literature	from	Sweden	(see	Appendix	I	for	the	list	of	references).	
RO:	Reverse	omosis.	MBBR:	Moving	bed	bioreactor.	PAC:	Powdered	activated	carbon.	GAC:	
Granular	activated	carbon.	BAF:	Biologically	active	filtration.	MBR:	Membrane	bioreactor.	
ClO2:	Chlorine	dioxide.

For the 38 selected chemicals (top 30 priority chemicals and 8 from the EU UWWTD; 
see Section 2.3) among the five selected advanced treatment technologies, average 
removal efficiency was the highest for GAC (94 %; data for 23 chemicals), followed 
by RO (92 %; 25 chemicals), NF (88 %; 24 chemicals), ozonation (86 %; 32  chemicals), 
and MBR (66 %; 30 chemicals) (Figure 8). Data on transformation products was 
especially scarce, for example, desvenlafaxine removal was only reported using MBR 
(64 % removal) (Hollman et al., 2020). Additionally, removal data on two  chemicals 
(i.e., laureth-5 and daidzein) were not found for any of the technologies. RO  generally 
has very high removal efficiency for organic micropollutants, which is also evident 
from our dataset; however, ketoprofen was an exception (15 % removal) (Rodriguez- 
Mozaz et al., 2015). Similarly, GAC performed well for all reported chemicals, except 
N,N-diethyl-m-toluamide (DEET, 17 % removal) (Yang et al., 2011). In recent years, 
converting existing bioreactors based on activated sludge process into submerged 
MBR have gained popularity, e.g., to achieve higher water quality for reuse appli-
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cations, due to their simplicity and low energy requirement ( Obotey Ezugbe and 
Rathilal, 2020). However, MBR alone is not sufficient to effectively remove a large 
number of our priority chemicals, such as pharmaceuticals (Wang et al., 2018). 
Membranes used in MBR have a larger pore size (0.04–0.4 µm) (Mamo et al., 2016; 
Phan et al., 2014) than NF (0.001–0.01 µm retained diameter) and RO  membranes 
(0.0001–0.001 µm retained diameter) (Obotey Ezugbe and Rathilal, 2020). Pharma-
ceutical molecules generally fall in the range 300–1 000 Da and require smaller 
pore sizes than MBR membranes; therefore, NF has been commonly used to 
remove  pharmaceuticals from aqueous solutions (Sun et al., 2011). Our dataset also 
shows that NF has a good removal for a majority of our priority chemicals, with the 
exception of propranolol and benzotriazole (30 % and 17 % removal, respectively). 
 Molecular weights of propranolol (260 Da) and benzotriazole (119 Da) can be too 
low for NF which generally has a molecular weight cut-off range of 200–10 000 Da6. 
RO membrane (molecular weight cut-off < 200 Da) were more effective for these 
 chemicals. However, it should be noted that RO membranes operate at a higher 
 pressure than NF membranes, resulting in higher energy costs.

Figure	8.	Maximum	removal	efficiency	(RE%)	of	38	selected	chemicals	and	average	RE%	(top	
row)	using	different	advanced	treatment	technologies.	GAC:	granular	activated	carbon.	MBR:	
membrane	bioreactor.	NF:	nano-filtration.	RO:	reverse	osmosis.	Note:	average	RE	were	calcu-
lated	after	omitting	chemicals	with	no	data.	See	Appendix	I	for	the	list	of	references	used	to	
obtain	removal	efficiencies.

A number of physiochemical properties shows either positive or negative correla-
tions with removal efficiency of different advanced treatment technologies ( Figure 9). 
As expected, molecular weight of the chemicals was positively correlated with 
the removal efficiency of advanced treatment technologies which are based on 

6 https://www.lenntech.com/services/mwco.htm

https://www.lenntech.com/services/mwco.htm
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physical separation (size exclusion mechanism), i.e., RO (rs = 0.65, p < 0.05), NF 
(rs = 0.56, p < 0.05), and to a much smaller extent, MBR (rs = 0.09, p = 0.65) ( Figure 9). 
Removal  efficiency of GAC was positively correlated with pKa (rs = 0.40, p = 0.07) 
and negatively correlated with molecular weight (rs = −0.21, p = 0.3) of the  chemicals. 
 Chemicals can be either neutral (non-ionized) or ionized depending on the pKa 
of the chemical and pH of the solution; GAC generally adsorbs non-ionized  species 
more effectively due to hydrophobic interactions. However, GAC types with  surface 
charge can enhance removal of ionized species through ionic interaction. Removal 
efficiency of ozonation was positively correlated with water solubility (rs = 0.48, 
p < 0.05) and negatively correlated with log Kow (rs = −0.32, p = 0.07). Other major 
correlations were observed for log Koc vs. removal efficiency of NF (rs = 0.43, p < 0.05) 
and RO (rs = 0.3, p = 0.1). In view of these correlations, NF and RO can be the preferred 
choice for chemicals with high molecular weight and high log Koc, such as clarithro-
mycin. At the same time, chemicals with high pKa, such as benzotriazole, may be 
effectively targeted using GAC. For chemicals which are highly water soluble and 
have low Koc, ozonation can be considered. However, there can be exceptions to these 
general correlations; for example, caffeine, which is highly water soluble with a low 
Kow, was only 85 % removed through ozonation (Hollman et al., 2020). Ozonation 
generally requires a downstream treatment step to remove, among other impurities, 
organic transformation products potentially formed during ozonation. Therefore, a 
combination of ozonation and GAC can be considered a viable choice for a wide range 
of chemicals, including ozonation transformation products (Reaume et al., 2015). 
Even if organic micropollutants are effectively removed, in some cases, wastewater 
treated by NF may not be suitable as reclaimed water for irrigation, due to high levels 
of other impurities such as chloride, sodium, and calcium in NF effluent (Hafiz et al., 
2021). On the other hand, both NF and ultra-filtration (the membrane used in MBR) 
membranes and ozonation, can remove E. coli below the limit of quantification, while 
GAC is also effective in E. coli removal below the EU requirement for water reuse 
(Bouchenak Khelladi et al., 2021; Gomes et al., 2019; Schwermer et al., 2017). E. coli 
concentration is an important parameter for the quality of reclaimed water and is one 
of the four parameters (E. coli, five-day biochemical oxygen demand, total suspended 
solids, and turbidity) included in the EU regulation on water reuse for agricultural 
irrigation (Regulation (EU) 2020/741).
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Figur	9.	Correlation	matrix	between	physicochemical	properties	of	chemicals	(n	=	38)	and	
their	removal	efficiency	through	different	advanced	treatment	technologies.	GAC:	granular	
activated	carbon.	MBR:	membrane	bioreactor.	NF:	nano-filtration.	RO:	reverse	osmosis.

To better understand how cost-effective the selected technologies are, their  capital, 
operating and energy costs are briefly compiled and compared (Table 3). GAC has 
the lowest costs for these aspects, followed by ozonation. MBR has the highest 
capital requirement. The reported range of capital investment required for MBR 
and for NF and RO overlap to some extent. Understandably, the energy requirement 
of membrane processes is many times higher than GAC, due to the application of 
high pressure that drives separation of water from pollutants across the membrane 
(Hafiz et al., 2021). Ozonation also closely follows membrane technologies, in terms 
of energy requirement, a major part of which is required for production of oxygen 
and generation of ozone from oxygen (Pistocchi et al., 2022). It should be noted that 
the approach adopted by different authors for calculation of these costs might vary, 
therefore this should be taken as a preliminary comparison only, e.g., the capital cost 
of MBR may include the cost of entire secondary treatment unit (activated sludge 
bioreactor) including the MBR screens. Similarly, the operating cost of GAC only 
includes the GAC regeneration cost. Furthermore, the actual cost of any system will 
also depend on operating conditions, e.g., operating pressure of NF and RO, and 
ozone dose in ozonation.
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Table 3. Capital, operating and energy cost of different advanced treatment technologies.
 GAC  Ozonation  MBR  NF  RO  
 Cost Reference Cost Reference Cost Reference Cost Reference Cost Reference
Capital 
cost 
(SEK/m3/
day)

400 Pistocchi 
et al., 2022

1 300* Pistocchi 
et al., 2022

4 000–
75 000**

Guo	et	al.,	2014;	
Rahman et al., 
2023;	Xiao	et	al.,	
2019

5 000–
26 000

https://samcotech.
com/much-reverse-
osmosis-nanofiltration-	
membrane-systems-
cost/

5 000–
26 000

https://samcotech.
com/much-reverse-
osmosis-nanofiltration-	
membrane-systems-
cost/

Operating	
cost 
(SEK/m3)

0.15† Pistocchi 
et al., 2022

  1.4–2.5†† Xiao	et	al.,	2019 0.9–7.5†† Abdel-Fatah,	2018;	
Shahmansouri and 
Bellona, 2015

1.09 Nazari Chamaki 
et al., 2023

Energy	
cost‡ 

(SEK/m3)

0.02 Pistocchi 
et al., 2022

0.20 Pistocchi 
et al., 2022

0.28–2.1 Rahman et al., 
2023;	Krzeminski	
et al., 2017

0.47–
1.62‡‡

Hafiz	et	al.,	2021 0.32–2.49 Hafiz	et	al.,	2021;	
Nazari Chamaki 
et al., 2023

*	Including	downstream	sand	filter.	Ozonation	generally	requires	GAC	treatment	afterwards	so	the	total	cost	would	be	1	300	+	400	=	1	700	SEK.
**	Cost	calculation	years	2007–2019.
†	Only	includes	GAC	regeneration	cost.
††	Including	energy	cost	(and	membrane	replacement	cost	in	case	of	MBR),	Cost	for	UF+NF	setup	for	nano-filtration.	Cost	for	2014	onwards.
‡	Calculated	using	2023	energy	prices	in	Sweden	and	energy	consumption	data	from	the	cited	references.
‡‡	Calculated	from	specific	energy	consumption	of	nano-filtration	for	different	experimental	operating	pressures.

https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
https://samcotech.com/much-reverse-osmosis-nanofiltration--membrane-systems-cost/
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Considering its effectiveness to remove CECs and the lower cost, GAC appears to 
be the most suitable technology for reclamation of treated municipal  wastewater 
for agricultural irrigation. However, GAC may not be the best choice under all 
conditions, and it alone may not be able to remove all contaminants to a safe level, 
therefore, the decision on which technology or combination of technologies to use 
should be made after careful consideration of organic micropollutants present in 
the wastewater, their concentrations in the secondary (or tertiary) treated effluent, 
and the safe concentration in the reclaimed water based on the applicable PNEC 
values. Instead of a single technology, advanced treatment technologies can be used 
in tandem, e.g., ozonation and GAC, to broaden the range of organic micropollutants 
removed during the quaternary treatment steps. Removal efficiency can also vary 
over the lifetime of a technology such as GAC. Therefore, it should be considered 
for technology selection in the future.
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4. Conclusions and Future 
Remarks

Situation of global water stress can worsen under a changing climate, and even 
countries like Sweden, which historically had a good access to water resources, 
may have to explore alternate supplies of water. Already, signs of water stress, 
such as decline in surface and ground water availability and rainfall deficits, have 
been observed in some parts of Sweden in recent decades (Grusson et al., 2021; 
 Teutschbein et al., 2022). Treated municipal wastewater can be used as an alternate 
water resource especially in times and in areas experiencing water stress. Currently, 
only a handful of places in Sweden have arrangements for reusing treated waste-
water. Since the annually available amount of treated wastewater in Sweden is 
considerable (1.2 billion m3), there is substantial potential for expansion of waste-
water reuse. For pursuing this, Sweden is also well placed in terms of socioeconomic 
conditions, as it ranks highly on three of the four factors (GDP per capita, urbaniza-
tion, and fraction of wastewater treated) that were positively correlated with national 
wastewater reuse. The fourth factor is level of water stress; although, the overall 
level of water stress is low in Sweden at the moment, specific places already face 
water stress. A major factor in limited reuse is public and farmer concern about the 
 presence of  hazardous substances in treated wastewater and their associated risk. 
These  concerns may be addressed by comprehensive and effective guidelines and 
regulations on water quality of treated effluent for reuse.

Current EU water reuse regulation (Regulation (EU) 2020/741) lacks any 
specific guidelines for CECs, and the proposed revisions to UWWTD (COM(2022) 
541 final) (European Commission, 2022) only include 13 chemicals, inclusion of 
which is not risk-based. The EU water reuse regulation does, however, mandates 
risk management plans to address exposure risks to the environment, human 
health, and animal health under certain site-specific conditions. These measures 
are, however, insufficient as there are still significant gaps in ensuring that effluent 
water quality is safe for reuse, regarding risks of the hazardous pollutants. This is 
mainly because regulatory frameworks often fail to take into account the long-term 
ecological impacts and complex interactions of trace chemical residues. To address 
this issue and for future policy direction (e.g., policy briefs on the subject), defining 
and enforcing upper concentration limits for certain high-risk priority chemicals 
in effluent wastewater is required. Being one of the strengths of this work, the list 
of priority chemicals presented in this report and the underlying risk and hazard 
assessment methodology can be useful for this purpose and also for  developing 
risk management plans for the Swedish environment. Preparation of policy 
brief should take into account the findings of this report, particularly the priority 
chemicals, and focus on reducing their occurrences in effluent water for reuse by 
providing limit concentraions, and making use of advanced treatment  technologies 
mandatory. The limit concentrations should be determined by considering 
both removal efficiency of the employed technologies and ecological risk assess-
ment of the resulting concentrations in effluent water. These should be  essential 
 components of any future regulation and legislation. It should be noted that, 
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because the dataset compiled is based on available literature, there can be other 
unknown chemicals which are not yet targeted in the past. Therefore, inclusion 
of additional literature and re-processing the data with our meta-analysis workflow 
would be beneficial in the future.

While evaluating effectiveness of different advanced treatment technologies, we 
have focused on high priority chemicals in our list and the compounds included in 
the proposed UWWTD. A similar approach can be used to define target compounds 
and chemical removal requirements for quaternary treatment, thereby expanding 
the list of 13 chemicals included in the proposed UWWTD. In addition, any regula-
tion for safe reuse would not be complete without including mitigation measures 
to address the risk of transformation products. There are only a few transforma-
tion products (e.g., OH-metronidazole, desvenlafaxine, N-desmethylcitalopram) 
included in our list because of the limited focus on transformation products in the 
literature. This shortcoming would need to be addressed in future regulations. 
As this report only focuses on human health hazard predicted based on chemical 
 stuctures, a potential knowledge gap to explore in the future is the human health 
risk assessment related to exposure to the priority chemicals through the consump-
tion of crops irrigated with wastewater. In our evaluation, GAC turned out to be the 
most suitable technology although it may have to be used in tandem with other 
technologies for effective removal of all priority chemicals.

In addition to removal in wastewater treatment plants, an important  component 
of the strategy to control exposure to hazardous chemicals is upstream source 
 tracing and control. Our risk-based list of priority chemicals also serves as a list 
of target compounds for authorities to cost-effectively focus on for upstream source 
tracing and potential control of release.
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Appendix I

Search String for Web of Science
TS = (Swed* AND (wastewater OR sewage OR effluent* OR “black water” OR black-
water OR gr*ywater OR “grey water” OR “gray water” OR excreta OR sludge OR 
“source- separated” OR “source separated waste fraction*” OR “waste water”) AND 
(micropollutant* OR pharmaceutical* OR antibiotic* OR hormon* OR  steroid* OR 
PFAS* OR PFAA* OR microplastic* OR “organic chemical*” OR “industr*  chemical*” 
OR “persistent organic pollutant*” OR POP* OR NSAID* OR metal* OR nano* OR 
PPCP* OR “personal care product*” OR “contaminant* of emerging concern” OR 
 contaminant* OR CEC* OR “New Emerging Risk Chemical*” OR NERC* OR “ unwanted 
substance*” OR “ unwanted chemical*” OR “antibiotic* resistance gene*”))

Search String for Scopus
TITLE-ABS-KEY (Swed* AND (wastewater OR sewage OR effluent* OR “black water” 
OR blackwater OR gr*ywater OR “grey water” OR “gray water” OR excreta OR sludge 
OR “source-separated” OR “source separated waste fraction*” OR “waste water”) 
AND (micropollutant* OR pharmaceutical* OR antibiotic* OR hormon* OR ster-
oid* OR PFAS* OR PFAA* OR microplastic* OR “organic chemical*” OR “industr* 
chemical*” OR “persistent organic pollutant*” OR POP* OR NSAID* OR metal* OR 
nano* OR PPCP* OR “personal care product*” OR “contaminant* of emerging con-
cern” OR contaminant* OR CEC* OR “New Emerging Risk Chemical*” OR NERC* 
OR “unwanted substance*” OR “unwanted chemical*” OR “antibiotic* resistance 
gene*”))
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Table A1. Values of ecological risk parameters and their scores for the selected chemical contaminants. FoE: frequency of exceedance; EoE: extent of exceedance; 
RQ: risk quotient.

Contaminant CAS Number FoE EoE RQ ScoreRQ ScoreEOE (ScoreRQ+ScoreEOE)/2 Scoreeco

bicalutamide 90357-06-5 0.97 6.0 8.0 1 1 1 1.97
fexofenadine 83799-24-0 0.94 65.3 66.7 1 1 1 1.94
diclofenac 15307-86-5 0.91 43.9 108.3 1 1 1 1.91
venlafaxine 93413-69-5 0.89 14.3 114.2 1 1 1 1.89
amoxicillin 26787-78-0 0.88 64.9 70.3 1 1 1 1.88
chlaritromycin 81103-11-9 0.86 78.4 390.0 1 1 1 1.86
DEET	(N,N-diethyl-m-toluamide) 134-62-3 0.83 35.0 71.2 1 1 1 1.83
desvenlafaxine 93413-62-8 0.72 2.4 3.2 1 1 1 1.72
atorvastatin 134523-00-5 0.59 18.1 85.1 1 1 1 1.59
genistein 446-72-0 0.55 2.4 3.7 1 1 1 1.55
azithromycin 83905-01-5 0.51 4.3 8.9 1 1 1 1.51
triclosan 3380-34-5 0.50 8.0 11.5 1 1 1 1.5
gemfibrozil 25812-30-0 0.45 13.5 52.0 1 1 1 1.45
ranitidine 66357-35-5 0.31 2.8 4.5 1 1 1 1.31
daidzein 486-66-8 0.31 1.8 4.0 1 1 1 1.31
ketoprofen 22071-15-4 0.30 2.2 2.9 1 1 1 1.3
ibuprofen 15687-27-1 0.28 4.8 9.2 1 1 1 1.28
oxazepam 604-75-1 0.24 1.9 10.7 1 1 1 1.24
fluoxetine 54910-89-3 0.20 3.3 7.8 1 1 1 1.2
erythromycin 114-07-8 0.15 2.4 4.5 1 1 1 1.15
PFNA 375-95-1 0.14 1.6 7.6 1 1 1 1.14
propranolol 525-66-6 0.09 2.0 26.0 1 1 1 1.09
ciprofloxacin 85721-33-1 0.06 1.3 11.9 1 1 1 1.06
caffeine 58-08-2 0.05 1.1 3.6 1 1 1 1.05
thiabendazole 148-79-8 0.05 0.5 2.7 1 0 0.5 0.55
tramadol 27203-92-5 0.04 0.8 1.9 1 0 0.5 0.54
codeine 76-57-3 0.03 0.8 2.5 1 0 0.5 0.53
bezafibrate 41859-67-0 0.02 0.2 1.4 1 0 0.5 0.52
metoprolol 51384-51-1 0.01 0.4 1.1 1 0 0.5 0.51
carbamazepine 298-46-4 0.01 0.4 1.0 1 0 0.5 0.51
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Contaminant CAS Number FoE EoE RQ ScoreRQ ScoreEOE (ScoreRQ+ScoreEOE)/2 Scoreeco

metformin 657-24-9 0.00 0.8 0.9 0 0 0 0
sulfamethoxazole 723-46-6 0.00 0.7 0.9 0 0 0 0
2,4,7,9-tetramethyl-5-decyn-4,7-diol 126-86-3 0.00 0.1 0.9 0 0 0 0
sertraline 79617-96-2 0.00 0.1 0.9 0 0 0 0
sulisobenzone 4065-45-6 0.00 0.8 0.9 0 0 0 0
carbamazepine	10,11-epoxyde 36507-30-9 0.00 0.6 0.8 0 0 0 0
naproxen 22204-53-1 0.00 0.2 0.7 0 0 0 0
10,11-dihydro-10-hydroxycarbamazepine 29331-92-8 0.00 0.6 0.6 0 0 0 0
acetaminophen 103-90-2 0.00 0.2 0.5 0 0 0 0
loperamide 53179-11-6 0.00 0.1 0.5 0 0 0 0
losartan 114798-26-4 0.00 0.1 0.4 0 0 0 0
amitriptylin 50-48-6 0.00 0.1 0.4 0 0 0 0
furosemide 54-31-9 0.00 0.0 0.4 0 0 0 0
tris(2-chloroethyl)phosphate	(TCEP) 115-96-8 0.00 0.2 0.3 0 0 0 0
nicotine 54-11-5 0.00 0.1 0.3 0 0 0 0
n-desmethylcitalopram 62498-67-3 0.00 0.2 0.2 0 0 0 0
tris(2-butoxyethyl)phosphate	(TBEP) 78-51-3 0.00 0.2 0.2 0 0 0 0
memantine 19982-08-2 0.00 0.2 0.2 0 0 0 0
clindamycin 18323-44-9 0.00 0.1 0.2 0 0 0 0
phenazone 60-80-0 0.00 0.1 0.2 0 0 0 0
simvastatin 79902-63-9 0.00 0.1 0.2 0 0 0 0
terbutryn 886-50-0 0.00 0.1 0.2 0 0 0 0
citalopram 59729-33-8 0.00 0.0 0.1 0 0 0 0
laureth-5 3055-95-6 0.00 0.1 0.1 0 0 0 0
sotalol 3930-20-9 0.00 0.1 0.1 0 0 0 0
climbazole 38083-17-9 0.00 0.1 0.1 0 0 0 0
progesterone 57-83-0 0.00 0.0 0.1 0 0 0 0
3-(4-methylbenzylidene)camphor 36861-47-9 0.00 0.1 0.1 0 0 0 0
budesonide 51333-22-3 0.00 0.0 0.1 0 0 0 0
dibutyl	phosphate 107-66-4 0.00 0.0 0.1 0 0 0 0
bisoprolol 66722-44-9 0.00 0.0 0.1 0 0 0 0
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Contaminant CAS Number FoE EoE RQ ScoreRQ ScoreEOE (ScoreRQ+ScoreEOE)/2 Scoreeco

clopidogrel 113665-84-2 0.00 0.1 0.1 0 0 0 0
benzotriazole 95-14-7 0.00 0.0 0.1 0 0 0 0
boscalid 188425-85-6 0.00 0.1 0.1 0 0 0 0
lidocaine 137-58-6 0.00 0.0 0.1 0 0 0 0
diuron 330-54-1 0.00 0.0 0.1 0 0 0 0
bisphenol A 80-05-7 0.00 0.0 0.0 0 0 0 0
lamotrigine 84057-84-1 0.00 0.0 0.0 0 0 0 0
fluconazole 86386-73-4 0.00 0.0 0.0 0 0 0 0
terbutaline 23031-25-6 0.00 0.0 0.0 0 0 0 0
clozapine 5786-21-0 0.00 0.0 0.0 0 0 0 0
mebendazole 31431-39-7 0.00 0.0 0.0 0 0 0 0
prothioconazole 178928-70-6 0.00 0.0 0.0 0 0 0 0
imazalil 35554-44-0 0.00 0.0 0.0 0 0 0 0
propiconazole 60207-90-1 0.00 0.0 0.0 0 0 0 0
tributyl	citrate	acetate 77-90-7 0.00 0.0 0.0 0 0 0 0
atenolol 29122-68-7 0.00 0.0 0.0 0 0 0 0
mirtazapine 85650-52-8 0.00 0.0 0.0 0 0 0 0
valsartan 137862-53-4 0.00 0.0 0.0 0 0 0 0
di-(2-ethylhexyl)phosphoric	acid 298-07-7 0.00 0.0 0.0 0 0 0 0
benzophenone 119-61-9 0.00 0.0 0.0 0 0 0 0
albuterol (salbutamol) 18559-94-9 0.00 0.0 0.0 0 0 0 0
amidotrizoic acid 117-96-4 0.00 0.0 0.0 0 0 0 0
diltiazem 42399-41-7 0.00 0.0 0.0 0 0 0 0
verapamil 52-53-9 0.00 0.0 0.0 0 0 0 0
salicylic	acid 69-72-7 0.00 0.0 0.0 0 0 0 0
zolpidem 82626-48-0 0.00 0.0 0.0 0 0 0 0
trimethoprim 738-70-5 0.00 0.0 0.0 0 0 0 0
BAM (dichlorobenzamide) 2008-58-4 0.00 0.0 0.0 0 0 0 0
telmisartan 144701-48-4 0.00 0.0 0.0 0 0 0 0
mono-n-butylphosphoric	acid 1623-15-0 0.00 0.0 0.0 0 0 0 0
bupropion 34841-39-9 0.00 0.0 0.0 0 0 0 0
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Contaminant CAS Number FoE EoE RQ ScoreRQ ScoreEOE (ScoreRQ+ScoreEOE)/2 Scoreeco

theophylline 58-55-9 0.00 0.0 0.0 0 0 0 0
hydrochlorothiazide	(HCTZ) 58-93-5 0.00 0.0 0.0 0 0 0 0
oxybenzone 131-57-7 0.00 0.0 0.0 0 0 0 0
amlodipine	besylate 111470-99-6 0.00 0.0 0.0 0 0 0 0
primidone 125-33-7 0.00 0.0 0.0 0 0 0 0
mefenamic acid 61-68-7 0.00 0.0 0.0 0 0 0 0
PFOS 1763-23-1 0.00 0.0 0.0 0 0 0 0
6:2	FTSA 27619-97-2 0.00 0.0 0.0 0 0 0 0
sulfaclozine 102-65-8 0.00 0.0 0.0 0 0 0 0
ramipril 87333-19-5 0.00 0.0 0.0 0 0 0 0
irbesartan 138402-11-6 0.00 0.0 0.0 0 0 0 0
2,2’-dimorpholinyldiethylether 6425-39-4 0.00 0.0 0.0 0 0 0 0
oxycodone 76-42-6 0.00 0.0 0.0 0 0 0 0
sparfloxacin 110871-86-8 0.00 0.0 0.0 0 0 0 0
metronidazole 443-48-1 0.00 0.0 0.0 0 0 0 0
pyridoxine	(vitamin	b6) 65-23-6 0.00 0.0 0.0 0 0 0 0
PFHpA 375-85-9 0.00 0.0 0.0 0 0 0 0
PFPeA 2706-90-3 0.00 0.0 0.0 0 0 0 0
loratadine 79794-75-5 0.00 0.0 0.0 0 0 0 0
metronidazole-OH 4812-40-2 0.00 0.0 0.0 0 0 0 0
Cetirizine 83881-51-0 0.00 0.0 0.0 0 0 0 0
propamocarb 24579-73-5 0.00 0.0 0.0 0 0 0 0
tetraethylene	glycol 112-60-7 0.00 0.0 0.0 0 0 0 0
PFHxS 355-46-4 0.00 0.0 0.0 0 0 0 0
PFHxA 307-24-4 0.00 0.0 0.0 0 0 0 0
PFOA 335-67-1 0.00 0.0 0.0 0 0 0 0
FOSA 754-91-6 0.00 0.0 0.0 0 0 0 0
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Table A2. Values and scores of environmental hazard parameters for the selected chemical contaminants.
Substance name CAS number log BCF Persistence 

water [days]
log Koc Solubility 

[log (mol/L)]
BCF score Persistence 

score
Mobility 

score
ScoreEH

PFOS 1763-23-1 3.73 57 2.5 0.4 1 1 1 1
sertraline 79617-96-2 3.29 44 3.6 1.2 0 1 1 0.67
PFOA 335-67-1 3.12 57 3.2 1.6 0 1 1 0.67
clindamycin 18323-44-9 0.01 82 2.2 6 305.2 0 1 1 0.67
bisoprolol 66722-44-9 0.15 82 3.6 813.9 0 1 1 0.67
PFNA 375-95-1 2.58 57 3.5 0.3 0 1 1 0.67
mirtazapine 85650-52-8 1.25 44 2.8 156.3 0 1 1 0.67
amitriptyline 50-48-6 2.59 241 3.6 9.7 0 1 1 0.67
PFHxS 355-46-4 3.6 21 3.4 10.3 1 0 1 0.67
propiconazole 60207-90-1 1.78 44 3.4 110 0 1 1 0.67
cetirizine 83881-51-0 0.8 44 3 29.5 0 1 1 0.67
nicotine 54-11-5 0.4 141 2 10 492.8 0 1 1 0.67
ramipril 87333-19-5 0.56 82 2.7 49.6 0 1 1 0.67
sparfloxacin 110871-86-8 0.37 82 2.6 6 779.6 0 1 1 0.67
laureth-5 3055-95-6 −0.01 91 4.2 187 0 1 1 0.67
imazalil 35554-44-0 1.6 44 3.7 179.9 0 1 1 0.67
mono-n-butylphosphoric	acid 1623-15-0 0.19 149 1.5 35 978.1 0 1 1 0.67
6:2	FTSA 27619-97-2 1.72 57 3 8.4 0 1 1 0.67
diclofenac 15307-86-5 2.7 0 3.8 2.4 0 0 1 0.33
naproxen 22204-53-1 1.42 7 2.7 15.9 0 0 1 0.33
oxazepam 604-75-1 0.83 22 2.6 141.9 0 0 1 0.33
trimethoprim 738-70-5 0.36 5 2.1 399.9 0 0 1 0.33
carbamazepine 298-46-4 1.35 15 2.8 112.1 0 0 1 0.33
citalopram 59729-33-8 1.63 23 3.4 24 0 0 1 0.33
ibuprofen 15687-27-1 1.62 8 2.1 21 0 0 1 0.33
fluconazole 86386-73-4 1.82 23 1.9 1 104.7 0 0 1 0.33
metoprolol 51384-51-1 0.33 6 3.1 16 911.3 0 0 1 0.33
sulfamethoxazole 723-46-6 0.37 2 2 427.6 0 0 1 0.33
tramadol 27203-92-5 0.99 7 2.8 588 0 0 1 0.33
clarithromycin 81103-11-9 −1.6 82 4.7 2 470.7 0 1 0 0.33
ketoprofen 22071-15-4 1.49 15 2.8 51 0 0 1 0.33
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Substance name CAS number log BCF Persistence 
water [days]

log Koc Solubility 
[log (mol/L)]

BCF score Persistence 
score

Mobility 
score

ScoreEH

atenolol 29122-68-7 0.08 6 2.5 13 289.3 0 0 1 0.33
erythromycin 114-07-8 −1.65 82 4.6 2 156.5 0 1 0 0.33
venlafaxine 93413-69-5 1.1 7 2.8 324.4 0 0 1 0.33
ciprofloxacin 85721-33-1 0.32 26 2.5 4 653.1 0 0 1 0.33
caffeine 58-08-2 0.02 5 1.8 7 974.7 0 0 1 0.33
losartan 114798-26-4 1.07 26 4.1 2.1 0 0 1 0.33
furosemide 54-31-9 −0.01 3 1.5 73 0 0 1 0.33
irbesartan 138402-11-6 1.1 23 4.3 0.4 0 0 1 0.33
sotalol 3930-20-9 0.37 10 2 2 180.2 0 0 1 0.33
diltiazem 42399-41-7 0.88 7 3.2 465.2 0 0 1 0.33
fluoxetine 54910-89-3 2.35 7 3.6 5.1 0 0 1 0.33
memantine 19982-08-2 1.95 2 3.7 119.5 0 0 1 0.33
tris(2-chloroethyl)	phosphate	(TCEP) 115-96-8 −0.18 36 1.2 1 302.2 0 0 1 0.33
propranolol 525-66-6 0.84 6 2.5 61.6 0 0 1 0.33
metformin 657-24-9 0.24 13 1 972 0 0 1 0.33
PFHxA 307-24-4 1.75 15 3 23.6 0 0 1 0.33
hydrochlorothiazide	(HCTZ) 58-93-5 −0.06 2 1.7 722.6 0 0 1 0.33
azithromycin 83905-01-5 −1.58 82 4.6 1 293.6 0 1 0 0.33
metronidazole 443-48-1 0.15 6 1.8 9 494.1 0 0 1 0.33
lamotrigine 84057-84-1 0.61 16 2.3 2.5 0 0 1 0.33
valsartan 137862-53-4 0.8 26 2.8 18.9 0 0 1 0.33
zolpidem 82626-48-0 0.96 23 3.3 21.1 0 0 1 0.33
lidocaine 137-58-6 0.69 4 2.5 4 101.3 0 0 1 0.33
2,4,7,9-tetramethyl-5-decyn-4,7-diol 126-86-3 1.59 8 1.9 468.9 0 0 1 0.33
bezafibrate 41859-67-0 1.35 7 4.1 28.6 0 0 1 0.33
DEET	(N,N-diethyl-m-toluamide) 134-62-3 0.38 8 2.3 685 0 0 1 0.33
desvenlafaxine 93413-62-8 1 4 2.7 594.7 0 0 1 0.33
climbazole 38083-17-9 1.38 7 3.1 42 0 0 1 0.33
salicylic	acid 69-72-7 0.34 2 1.6 2 240.2 0 0 1 0.33
benzophenone 119-61-9 0.89 8 2.6 137 0 0 1 0.33
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Substance name CAS number log BCF Persistence 
water [days]

log Koc Solubility 
[log (mol/L)]

BCF score Persistence 
score

Mobility 
score

ScoreEH

bicalutamide 90357-06-5 0.97 23 2.2 1.8 0 0 1 0.33
gemfibrozil 25812-30-0 1.67 7 2.3 45.3 0 0 1 0.33
terbutryn 886-50-0 1.09 26 2.9 25 0 0 1 0.33
diuron 330-54-1 0.93 23 2.4 42 0 0 1 0.33
PFPeA 2706-90-3 1.4 7 2 89.9 0 0 1 0.33
thiabendazole 148-79-8 0.41 6 3.2 50 0 0 1 0.33
clopidogrel 113665-84-2 1.52 7 3.2 13.5 0 0 1 0.33
acetaminophen 103-90-2 0.29 2 1.7 14 011.8 0 0 1 0.33
carbamazepine	10,11-epoxyde 36507-30-9 0.66 10 3.1 308.9 0 0 1 0.33
di-(2-ethylhexyl)phosphoric	acid 298-07-7 0.64 23 3.2 182.2 0 0 1 0.33
phenazone 60-80-0 0.77 8 2 241.6 0 0 1 0.33
terbutaline 23031-25-6 0.32 4 2 2 947.4 0 0 1 0.33
10,11-dihydro-10-hydroxycarbama-
zepine

29331-92-8 0.83 26 2.8 116.2 0 0 1 0.33

3-(4-methylbenzylidene)camphor 36861-47-9 2.28 23 3.2 4 0 0 1 0.33
albuterol (salbutamol) 18559-94-9 0.21 4 1.9 4 639.7 0 0 1 0.33
BAM (dichlorobenzamide) 2008-58-4 0.73 7 0.5 2 727.9 0 0 1 0.33
dibutyl	phosphate 107-66-4 0.75 13 1.3 17 207.4 0 0 1 0.33
n-desmethylcitalopram 62498-67-3 1.6 23 3 15.1 0 0 1 0.33
prothioconazole 178928-70-6 1.63 4 2.9 11.1 0 0 1 0.33
tetraethylene	glycol 112-60-7 0.13 4 1 1 000 883.2 0 0 1 0.33
theophylline 58-55-9 0.05 8 1.6 3 333.1 0 0 1 0.33
tributyl	citrate	acetate 77-90-7 0.46 7 2.3 66 0 0 1 0.33
2,2’-dimorpholinyldiethylether 6425-39-4 −0.03 3 2.4 267 015.4 0 0 1 0.33
genistein 446-72-0 0.43 7 2.9 66.6 0 0 1 0.33
metronidazole-oh 4812-40-2 0.23 6 1.7 21 598.6 0 0 1 0.33
primidone 125-33-7 0.54 4 2 500 0 0 1 0.33
mefenamic acid 61-68-7 2.01 4 2.8 20 0 0 1 0.33
pyridoxine	(vitamin	b6) 65-23-6 0.08 2 1.9 63 524.7 0 0 1 0.33
mebendazole 31431-39-7 1.26 7 2.4 71.3 0 0 1 0.33
amidotrizoic acid 117-96-4 0.87 4 2.5 419.5 0 0 1 0.33
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Substance name CAS number log BCF Persistence 
water [days]

log Koc Solubility 
[log (mol/L)]

BCF score Persistence 
score

Mobility 
score

ScoreEH

benzotriazole 95-14-7 0.37 6 1.7 19 817.9 0 0 1 0.33
loratadine 79794-75-5 1.61 7 3.6 0.4 0 0 1 0.33
oxybenzone 131-57-7 1.98 7 2.6 72.4 0 0 1 0.33
tris(2-butoxyethyl)	phosphate	(TBEP) 78-51-3 0.76 23 4.1 1 100.2 0 0 1 0.33
bisphenol A 80-05-7 1.64 4 3.2 120.1 0 0 1 0.33
boscalid 188425-85-6 1.92 22 3.2 2.7 0 0 1 0.33
sulfaclozine 102-65-8 0.12 4 2.5 330.1 0 0 1 0.33
daidzein 486-66-8 0.63 7 2.9 64.4 0 0 1 0.33
bupropion 34841-39-9 1.02 22 2.1 275.4 0 0 1 0.33
clozapine 5786-21-0 0.96 3 2.7 26.3 0 0 1 0.33
loperamide 53179-11-6 1.13 23 4.5 12.8 0 0 1 0.33
PFHpA 375-85-9 2 23 3.3 8.6 0 0 1 0.33
amoxicillin 26787-78-0 0.35 10 1.7 1 681.5 0 0 1 0.33
amlodipine* 111470-99-6 0.23 7 1.6 161.8 0 0 1 0.33
propamocarb 24579-73-5 0.37 2 2.5 894 754.3 0 0 1 0.33
sulisobenzone 4065-45-6 0.41 7 2.3 1 561.3 0 0 1 0.33
besylate	(bensensulfonic	acid)* 111470-99-6 0.3 2 1.5 48 488.4 0 0 1 0.33
ranitidine 66357-35-5 0.16 3 3 654.3 0 0 1 0.33
FOSA 754-91-6 1.69 57 2.82 0.0 672 0 1 0 0.33
codeine 76-57-3 0.69 7 4.9 9 000.2 0 0 0 0
fexofenadine 83799-24-0 0.54 0 5.2 22.7 0 0 0 0
progesterone 57-83-0 1.91 23 5.7 8.8 0 0 0 0
atorvastatin 134523-00-5 0.35 26 5.4 28.3 0 0 0 0
telmisartan 144701-48-4 0.96 11 5.1 0.2 0 0 0 0
oxycodone 76-42-6 0.4 7 4.6 333.9 0 0 0 0
verapamil 52-53-9 0.64 7 5.2 0.8 0 0 0 0
budesonide 51333-22-3 0.56 26 4.7 40.8 0 0 0 0
simvastatin 79902-63-9 0.96 7 4.9 8.8 0 0 0 0
triclosan 3380-34-5 1.72 19 4.6 10 0 0 0 0
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Table A3. Values and scores of human health hazard parameters for the selected chemical contaminants.
Substance name CAS 

number
Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

fluoxetine 54910-
89-3

NON-
mutagenic

NON- 
Carcinogen

Toxicant Not NON-
active

Toxic Inhibitor Sensi-
tizer

0 0 1 1 0 1 1 1 0.62

flukonazole 86386-
73-4

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 1 1 0 0 1 0 1 0.5

verapamil 52-53-9 NON-
mutagenic

NON- 
Carcinogen

Toxicant Active NON-
active

Toxic Inhibitor Sensi-
tizer

0 0 1 1 0 1 1 1 0.62

bicalutamide 90357-
06-5

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

Active Toxic Substrate Sensi-
tizer

0 0 0 0 1 1 1 1 0.5

citalopram 59729-
33-8

NON-
mutagenic

Carcinogen Toxicant Not NON-
active

NON-
Toxic

Non Sensi-
tizer

0 1 1 1 0 0 0 1 0.5

n-desmethyl- 
citalopram

62498-
67-3

NON-
mutagenic

NON- 
Carcinogen

Toxicant Not NON-
active

NON-
Toxic

Non Sensi-
tizer

0 0 1 1 0 0 0 1 0.38

clozapine 5786-
21-0

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Unknown Inhibitor Sensi-
tizer

0 1 1 0 0 1 1 1 0.62

metformin 657-24-9 NON-
mutagenic

NON- 
Carcinogen

Toxicant Not NON-
active

Unknown Non Sensi-
tizer

0 0 1 1 0 1 0 1 0.5

memantine 19982-
08-2

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 0 1 0 0 0 0 1 0.25

2,2’-dimor-pholinyl- 
diethyl-ether

6425-
39-4

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

Possible NON-
active

Unknown Non Sensi-
tizer

0 0 0 1 0 1 0 1 0.38

climbazole 38083-
17-9

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

loperamide 53179-
11-6

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

Active NON-
Toxic

Inhibitor NON-
Sensi-
tizer

0 0 0 0 1 0 1 0 0.25

zolpidem 82626-
48-0

Mutagenic Carcinogen Toxicant NON-
active

NON-
active

Toxic Inhibitor Sensi-
tizer

1 1 1 0 0 1 1 1 0.75

atenolol 29122-
68-7

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 0 1 0 0 0 0 1 0.25

carbamazepine 298-
46-4

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 1 1 0 0 1 0 1 0.5

carbamazepine 
10,11-epoxyde

36507-
30-9

Mutagenic Carcinogen Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

1 1 1 0 0 1 0 1 0.62

10,11-dihydro-
10-	hydroxy-
carbamazepine

29331-
92-8

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38
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Substance name CAS 
number

Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

BAM 
(dichlorobenzamide)

2008-
58-4

NON-
mutagenic

NON- 
Carcinogen

Toxicant Possible NON-
active

Unknown Non Sensi-
tizer

0 0 1 1 0 1 0 1 0.5

clindamycin 18323-
44-9

Mutagenic Carcinogen NON-
Toxicant

NON-
active

NON-
active

Toxic Inhibitor NON-
Sensi-
tizer

1 1 0 0 0 1 1 0 0.5

lidocaine 137-58-6 NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 0 0 0 1 0 1 0.25

acetaminophen 103-90-2 NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 0 0 0 1 0 1 0.25

diuron 330-54-1 Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

1 0 1 0 0 1 0 1 0.5

boscalid 188425-
85-6

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

gemfibrozil 25812-
30-0

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

PFNA 375-95-1 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non NON-
Sensi-
tizer

0 1 0 0 0 1 0 0 0.25

PFOA 335-67-1 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

PFHpA 375-85-9 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

PFHxA 307-24-4 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

PFPeA 2706-
90-3

NON-
mutagenic

Carcinogen NON-
Toxicant

Possible NON-
active

Unknown Non Sensi-
tizer

0 1 0 1 0 1 0 1 0.5

valsartan 137862-
53-4

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 1 1 0 0 1 0 1 0.5

bezafibrate 41859-
67-0

NON-
mutagenic

Carcinogen Toxicant Possible NON-
active

Toxic Non Sensi-
tizer

0 1 1 1 0 1 0 1 0.62

fexofenadine 83799-
24-0

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Inhibitor Sensi-
tizer

0 0 1 0 0 0 1 1 0.38

ibuprofen 15687-
27-1

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

naproxen 22204-
53-1

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

ketoprofen 22071-
15-4

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38
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Substance name CAS 
number

Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

sparfloxacin 110871-
86-8

Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Substrate Sensi-
tizer

1 0 1 0 0 1 1 1 0.62

ciprofloxacin 85721-
33-1

Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Substrate Sensi-
tizer

1 0 1 0 0 1 1 1 0.62

ramipril 87333-
19-5

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Non NON-
Sensi-
tizer

0 0 0 0 0 1 0 0 0.12

amoxicillin 26787-
78-0

NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

atorvastatin 134523-
00-5

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Substrate NON-
Sensi-
tizer

0 0 1 0 0 1 1 0 0.38

cetirizine 83881-
51-0

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

diclofenac 15307-
86-5

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

amidotrizoic acid 117-96-4 NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 1 1 0 0 0 0 1 0.38

salicylic	acid 69-72-7 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Non NON-
Sensi-
tizer

0 0 1 0 0 0 0 0 0.12

furosemide 54-31-9 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

mefenamic acid 61-68-7 NON-
mutagenic

Carcinogen Toxicant Possible NON-
active

Toxic Non Sensi-
tizer

0 1 1 1 0 1 0 1 0.62

telmisartan 144701-
48-4

Mutagenic NON- 
Carcinogen

Toxicant Possible NON-
active

Unknown Non NON-
Sensi-
tizer

1 0 1 1 0 1 0 0 0.5

tributyl	citrate-
acetate

77-90-7 NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Inhibitor NON-
Sensi-
tizer

0 0 0 0 0 1 1 0 0.25

clopidogrel 113665-
84-2

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Inhibitor Sensi-
tizer

0 0 0 0 0 1 1 1 0.38

amlodipine* 111470-
99-6

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Inhibitor Sensi-
tizer

0 0 1 0 0 0 1 1 0.38

mebendazole 31431-
39-7

Mutagenic Carcinogen Toxicant NON-
active

NON-
active

Toxic Inhibitor Sensi-
tizer

1 1 1 0 0 1 1 1 0.75
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Substance name CAS 
number

Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

diltiazem 42399-
41-7

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Inhibitor NON-
Sensi-
tizer

0 0 0 0 0 1 1 0 0.25

loratadine 79794-
75-5

Mutagenic Carcinogen NON-
Toxicant

NON-
active

NON-
active

NON-
Toxic

Substrate Sensi-
tizer

1 1 0 0 0 0 1 1 0.5

propamocarb 24579-
73-5

Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

1 0 1 0 0 1 0 1 0.5

DEET	(N,N- 
diethyl-m- 
toluamide)

134-62-3 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 0 1 0 0 0 0 1 0.25

bupropion 34841-
39-9

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 1 0 0 1 0 1 0.5

sulisobenzone 4065-
45-6

Mutagenic Carcinogen Toxicant NON-
active

NON-
active

NON-
Toxic

Inhibitor Sensi-
tizer

1 1 1 0 0 0 1 1 0.62

oxybenzone 131-57-7 Mutagenic Carcinogen Toxicant Possible NON-
active

NON-
Toxic

Non Sensi-
tizer

1 1 1 1 0 0 1 1 0.75

benzophenone 119-61-9 NON-
mutagenic

NON- 
Carcinogen

Toxicant Possible NON-
active

Unknown Substrate Sensi-
tizer

0 0 1 1 0 1 1 1 0.62

genistein 446-72-0 NON-
mutagenic

NON- 
Carcinogen

Toxicant Active NON-
active

Toxic Non Sensi-
tizer

0 0 1 1 0 1 0 1 0.5

daidzein 486-
66-8

NON-
mutagenic

Carcinogen Toxicant Active NON-
active

Toxic Non Sensi-
tizer

0 1 1 1 0 1 0 1 0.62

phenazone 60-80-0 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

budesonide 51333-
22-3

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

NON-
Toxic

Inhibitor NON-
Sensi-
tizer

0 1 1 0 0 0 1 0 0.38

oxycodone 76-42-6 NON-
mutagenic

Carcinogen Toxicant Possible NON-
active

NON-
Toxic

Non Sensi-
tizer

0 1 1 1 0 0 0 1 0.5

irbesartan 138402-
11-6

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Inhibitor Sensi-
tizer

0 0 1 0 0 1 1 1 0.5

oxazepam 604-75-1 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

Active Toxic Non Sensi-
tizer

0 0 1 0 1 1 0 1 0.5

3-(4-methyl- 
benzylidene)camphor

36861-
47-9

NON-
mutagenic

Carcinogen Toxicant Possible Active NON-
Toxic

Non Sensi-
tizer

0 1 1 1 1 0 0 1 0.62

primidone 125-33-7 Mutagenic NON- 
Carcinogen

Toxicant Possible NON-
active

Toxic Non Sensi-
tizer

1 0 1 1 0 1 0 1 0.62
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Substance name CAS 
number

Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

theophylline 58-55-9 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

caffeine 58-08-2 NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 0 0 0 1 0 1 0.25

erythromycin 114-07-8 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Substrate NON-
Sensi-
tizer

0 0 1 0 0 1 1 0 0.38

clarithromycin 81103-
11-9

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Substrate NON-
Sensi-
tizer

0 0 1 0 0 1 1 0 0.38

azithromycin 83905-
01-5

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Unknown Substrate NON-
Sensi-
tizer

0 1 1 0 0 1 1 0 0.5

simvastatin 79902-
63-9

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Toxic Inhibitor NON-
Sensi-
tizer

0 1 1 0 0 1 1 0 0.5

progesterone 57-83-0 NON-
mutagenic

Carcinogen Toxicant Possible Active Toxic Inhibitor Sensi-
tizer

0 1 1 1 1 1 1 1 0.88

mono-n-butyl-
phosphoric acid

1623-
15-0

NON-
mutagenic

Carcinogen Toxicant Not NON-
active

Unknown Non Sensi-
tizer

0 1 1 1 0 1 0 1 0.62

di-(2-ethylhexyl)
phosphoric acid

298-07-7 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Inhibitor Sensi-
tizer

0 0 1 0 0 1 1 1 0.5

dibutyl	phosphate 107-66-4 NON-
mutagenic

Carcinogen Toxicant Not NON-
active

Unknown Non Sensi-
tizer

0 1 1 1 0 1 0 1 0.62

tris(2-chloroethyl)
phosphate	(TCEP)

115-96-8 NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 1 0 0 1 0 1 0.5

tris(2-butoxyethyl)
phosphate	(TBEP)

78-51-3 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

hydrochlorothiazide	
(HCTZ)

58-93-5 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

sotalol 3930-
20-9

NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 1 0 0 0 0 0 1 0.25

sulfaklozine 102-65-8 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

sulfamethoxazole 723-46-6 NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

PFOS 1763-23-1 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non NON-
Sensi-
tizer

0 1 0 0 0 1 0 0 0.25
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Substance name CAS 
number

Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

PFHxS 355-46-4 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

6:2	FTSA 27619-
97-2

NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38

besylate	(benzensul-
fonic	acid)*

111470-
99-6

NON-
mutagenic

NON- 
Carcinogen

Toxicant Not NON-
active

Unknown Non NON-
Sensi-
tizer

0 0 1 1 0 1 0 0 0.38

ranitidine 66357-
35-5

NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 0 0 0 1 0 1 0.25

metronidazole 443-48-1 Mutagenic Carcinogen NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

1 1 0 0 0 1 0 1 0.5

metronidazole-OH 4812-
40-2

Mutagenic NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

1 0 0 0 0 1 0 1 0.38

2,4,7,9-tetramethyl-5- 
decyn-4,7-diol

126-86-3 NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 0 0 0 1 0 1 0.25

metoprolol 51384-
51-1

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 0 1 0 0 0 0 1 0.25

bisoprolol 66722-
44-9

NON-
mutagenic

NON- 
Carcinogen

Toxicant Possible NON-
active

NON-
Toxic

Non Sensi-
tizer

0 0 1 1 0 0 0 1 0.38

propranolol 525-66-6 NON-
mutagenic

NON- 
Carcinogen

Toxicant Possible NON-
active

Toxic Non Sensi-
tizer

0 0 1 1 0 1 0 1 0.5

prothioconazole 178928-
70-6

Mutagenic Carcinogen Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

1 1 1 0 0 0 0 1 0.5

venlafaxine 93413-
69-5

NON-
mutagenic

Carcinogen Toxicant Possible Active Unknown Non Sensi-
tizer

0 1 1 1 1 1 0 1 0.75

codeine 76-57-3 NON-
mutagenic

NON- 
Carcinogen

Toxicant Possible NON-
active

Toxic Non Sensi-
tizer

0 0 1 1 0 1 0 1 0.5

tramadol 27203-
92-5

NON-
mutagenic

Carcinogen Toxicant Not Active Unknown Inhibitor Sensi-
tizer

0 1 1 1 1 1 1 1 0.88

tetraethylene	glycol 112-60-7 NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 1 1 0 0 1 0 1 0.5

laureth-5 3055-
95-6

NON-
mutagenic

NON- 
Carcinogen

Toxicant Possible NON-
active

Unknown Inhibitor Sensi-
tizer

0 0 1 1 0 1 1 1 0.62

losartan 114798-
26-4

NON-
mutagenic

NON- 
Carcinogen

Toxicant Not NON-
active

Toxic Substrate Sensi-
tizer

0 0 1 1 0 1 1 1 0.62

pyridoxine 
(vitamin b6)

65-23-6 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 1 0 0 0 1 0 1 0.38
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Substance name CAS 
number

Muta-
genicity

Carcino-
genicity

Develop-
mental 
toxicity

Estrogen 
receptor 
effect

Androgen 
receptor 
effect

Hepa-
toxicity

P-glyco-
protein 
activity

Skin 
sensiti-
zation

Muta-
genicity 
score

Carcino-
genicity 
score

Develop-
mental 
toxicity 
score

Estrogen 
receptor 
effect 
score

Androgen 
receptor 
effect 
score

Hepa-
toxicity 
score

P-glyco-
protein 
activity 
score

Skin 
sensiti-
zation 
score

ScoreHH

terbutaline 23031-
25-6

NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 1 0 0 0 0 0 1 0.25

desvenlafaxine 93413-
62-8

NON-
mutagenic

Carcinogen Toxicant Possible Active Unknown Non Sensi-
tizer

0 1 1 1 1 1 0 1 0.75

bisphenol A 80-05-7 NON-
mutagenic

NON- 
Carcinogen

Toxicant Active Active Unknown Non Sensi-
tizer

0 0 1 1 1 1 0 1 0.62

albuterol 
(salbutamol)

18559-
94-9

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

NON-
Toxic

Non Sensi-
tizer

0 1 1 0 0 0 0 1 0.38

triclosan 3380-
34-5

NON-
mutagenic

Carcinogen Toxicant NON-
active

Active NON-
Toxic

Non Sensi-
tizer

0 1 1 0 1 0 0 1 0.5

amitriptyline 50-48-6 NON-
mutagenic

NON- 
Carcinogen

Toxicant Not Active Toxic Inhibitor Sensi-
tizer

0 0 1 1 1 1 1 1 0.75

sertraline 79617-
96-2

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

Active Unknown Inhibitor Sensi-
tizer

0 0 1 0 1 1 1 1 0.62

benzotriazole 95-14-7 Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

1 0 1 0 0 1 0 1 0.5

terbutryn 886-
50-0

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Unknown Non Sensi-
tizer

0 0 1 0 0 1 0 1 0.38

trimethoprim 738-70-5 Mutagenic NON- 
Carcinogen

Toxicant NON-
active

Active Toxic Substrate Sensi-
tizer

1 0 1 0 1 1 1 1 0.75

nicotine 54-11-5 NON-
mutagenic

NON- 
Carcinogen

NON-
Toxicant

NON-
active

NON-
active

Toxic Non Sensi-
tizer

0 0 0 0 0 1 0 1 0.25

mirtazapine 85650-
52-8

NON-
mutagenic

Carcinogen Toxicant NON-
active

NON-
active

Toxic Inhibitor Sensi-
tizer

0 1 1 0 0 1 1 1 0.62

imazalil 35554-
44-0

NON-
mutagenic

NON- 
Carcinogen

Toxicant NON-
active

Active NON-
Toxic

Non Sensi-
tizer

0 0 1 0 1 0 0 1 0.38

propiconazole 60207-
90-1

NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

Active Toxic Non Sensi-
tizer

0 1 0 0 1 1 0 1 0.5

thiabendazole 148-79-8 Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

1 0 1 0 0 1 0 1 0.5

lamotrigine 84057-
84-1

Mutagenic NON- 
Carcinogen

Toxicant NON-
active

NON-
active

Toxic Non Sensi-
tizer

1 0 1 0 0 1 0 1 0.5

FOSA 754-91-6 NON-
mutagenic

Carcinogen NON-
Toxicant

NON-
active

NON-
active

Unknown Non NON-
Sensi-
tizer

0 1 0 0 0 1 0 0 0.25
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To reuse or not: is purified 
wastewater a non-toxic and 
sustainable resource for the 
future? (REASSURE)
Risks associated with hazardous  pollutants 
in wastewater reuse and their mitigation

In the REASSURE research project, the researchers have investigated the 

risks associated with hazardous pollutants in wastewater reuse and their 

mitigation. The aim of the research synthesis is to improve knowledge 

about the potential and sustainability of using treated domestic waste-

water both in Sweden and internationally, with a focus on the adverse 

impacts by hazardous pollutants in the wastewater.

There are major differences between countries, both in practice and 

in how they view wastewater reuse, as well as the health risks it poses to 

people and the environment. Researchers have also evaluated the potential 

of advanced treatment technologies for hazardous pollutants.

The removal efficiency of chemical contaminants was summarized for 

five selected technologies. The results show that a combination of different 

technologies may be used to achieve acceptable wastewater treatment.
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